“Timber Wars” from Oregon Public Broadcasting wins McElheny Award for local science reporting

The Knight Science Journalism Program at MIT has named Oregon Public Broadcasting’s “Timber Wars” podcast as 2021 winner of the prestigious Victor K. McElheny Award for local and regional science journalism. The seven-part series tells the story of how a group of activists and scientists turned a fight over logging and animal protection into one of the biggest environmental conflicts of the 20th century — a conflict that still resonates in culture wars today. The podcast is the first work of audio journalism to win the McElheny Award in the competition’s three-year history.

Judges praised “Timber Wars” for its rigorous reporting, artful storytelling, and deft handling of intricate science. “It ticks all the boxes: superb craftsmanship and storytelling; delightful science that is explained without pedantry; and real impact,” said the jury. “They really dug into the history and were able to connect it to the current day.” The podcast also resonated with policymakers. Oregon State Representative Dacia Grayber called it “the best history and take on this I’ve ever heard.”

“Timber Wars” was conceived and executive produced by Ed Jahn, of Oregon Public Broadcasting’s Science and Environment team. Aaron Scott, a producer and reporter for “Oregon Field Guide,” was the podcast’s reporter, writer, host, and lead producer. David Steves, Peter Frick-Wright, Robbie Carver, and Laura Gibson contributed to editing, production, sound design, and music composition.

The winning entry topped a large and highly competitive field of submissions from media outlets across the country. Also making the short list of finalists were: The Boston Globe’s “The Virus’s Tale,” a day-by-day account of the handling of the city’s first Covid-19 cases; an investigation by The Detroit Free Press and Type Investigations into Detroit housing demolitions and their potential role in child lead poisoning; a feature by Boston-based WBUR on the quest to return loons to their native Massachusetts habitats; and a series from The Arizona Republic that chronicles how Indigenous Hopi are grappling with climate change and vanishing water sources.

“It was really a stellar year for local science reporting,” says Knight Science Journalism Program director Deborah Blum. “It was heartening to see so many insightful and beautifully told stories across such a range of environmental issues. These works are a reminder of just how integral science is to our everyday lives, and how crucial it is that local journalists receive support to tell these stories.”

Named after the Knight Science Journalism Program’s founding director, the Victor K. McElheny Award was established to honor outstanding coverage of science, public-health, technology, and environmental issues at the local and regional level. Members of the winning “Timber Wars” team will receive the award’s $5,000 prize. Due to the pandemic, the Knight Science Journalism Program will not hold an in-person award ceremony this year.

The Knight Science Journalism Program extends a special thanks to the award’s jury: Rachel Ehrenberg, Knowable Magazine; Sujata Gupta, Science News; Eric Hand, Science; Emily Laber-Warren, Craig Newmark Graduate School of Journalism at CUNY; Dave Spratt, Institute for Journalism & Natural Resources, and screeners. The McElheny Award is made possible by generous support from Victor K. McElheny, Ruth McElheny, and the Rita Allen Foundation.

The 2021 McElheny Award honorees:

Winner:

  • Timber Wars” (Episodes 1 and 2), Oregon Public Broadcasting. (Ed Jahn, Aaron Scott, David Steves, Peter Frick-Wright, Robbie Carver, and Laura Gibson)

Finalists:

The Knight Science Journalism Program at MIT, founded more than 30 years ago, seeks to nurture and enhance the ability of journalists from around the world to accurately document and illuminate the often complex intersection of science, technology, and human culture. It does so through an acclaimed fellowship program — which hosts 10 or more journalists every academic year — and also through
science-focused seminars, skills-focused master classes, workshops, and publications. Since it began, the program has hosted more than 300 fellows, who continue to cover science across a range of platforms in the United States, including The New York Times, The Wall Street Journal, Forbes, Time, Scientific American, Science, the Associated Press, and broadcast outlets ranging from ABC News to CNN, as well as in numerous other countries.

The MIT Press launches MIT Open Publishing Services

The MIT Press has announced the launch of MIT Open Publishing Services, a scholar-focused, MIT-branded hosting and publishing services operation.

MIT Open Publishing Services (MITops), working with its partner the Knowledge Futures Group, provides a portfolio of services to mission-aligned partners, including peer review support and editorial development; professional copy editing and design; marketing and publicity; and hosting on the PubPub open source platform.  

The MIT Press believes that the full potential of institutionally owned and managed infrastructure will be realized by pairing publishing technology innovation with economic incentives that will make it possible for the academy to reclaim the marketplace for scholarly communications. “This model will accelerate the shift away from the academy’s growing dependence on large multinational information service providers,” says Amy Brand, director and publisher of the MIT Press. “Because we are mission-aligned with the institutional environments that we serve, we can meet the needs of researchers, authors, and readers ‘where they are.’”  

One of the first projects published with support from the MITops program is a new case studies series that examines the social, ethical, and policy challenges of present-day efforts in computing. Published as part of the Social and Ethical Responsibilities of Computing (SERC) cross-cutting program within the MIT Stephen A. Schwarzman College of Computing and edited by associate deans David Kaiser and Julie Shah, the series aims to facilitate the development of responsible “habits of mind and action” for those who create and deploy computing technologies. 

The inaugural set of cases in the series places readers in various settings that challenge them to consider the social and ethical implications of computing technologies, such as how social media services and surveillance tools are built; the racial disparities that can arise from deploying facial recognition technology in unregulated, real-world settings; the biases of risk prediction algorithms in the criminal justice system; and the politicization of data collection. New sets of case studies will be published twice a year on the PubPub platform.

“It has been such a pleasure working with the MITops team to launch our new peer-reviewed, open-access MIT Case Studies series in Social and Ethical Responsibilities of Computing,” notes David Kaiser, Germeshausen Professor of the History of Science and professor of physics at MIT. “The PubPub platform is easy to use and embodies many of the values we aim to highlight in SERC. More than that, the MITops team is passionate about enabling equitable, accessible scholarly publishing — of finding new, sustainable ways to share hard-won knowledge broadly. I am thrilled that Issue 1 is now available, and I look forward to working with the team for Issue 2 and beyond.” 

The MIT Press launches MIT Open Publishing Services

The MIT Press has announced the launch of MIT Open Publishing Services, a scholar-focused, MIT-branded hosting and publishing services operation.

MIT Open Publishing Services (MITops), working with its partner the Knowledge Futures Group, provides a portfolio of services to mission-aligned partners, including peer review support and editorial development; professional copy editing and design; marketing and publicity; and hosting on the PubPub open source platform.  

The MIT Press believes that the full potential of institutionally owned and managed infrastructure will be realized by pairing publishing technology innovation with economic incentives that will make it possible for the academy to reclaim the marketplace for scholarly communications. “This model will accelerate the shift away from the academy’s growing dependence on large multinational information service providers,” says Amy Brand, director and publisher of the MIT Press. “Because we are mission-aligned with the institutional environments that we serve, we can meet the needs of researchers, authors, and readers ‘where they are.’”  

One of the first projects published with support from the MITops program is a new case studies series that examines the social, ethical, and policy challenges of present-day efforts in computing. Published as part of the Social and Ethical Responsibilities of Computing (SERC) cross-cutting program within the MIT Stephen A. Schwarzman College of Computing and edited by associate deans David Kaiser and Julie Shah, the series aims to facilitate the development of responsible “habits of mind and action” for those who create and deploy computing technologies. 

The inaugural set of cases in the series places readers in various settings that challenge them to consider the social and ethical implications of computing technologies, such as how social media services and surveillance tools are built; the racial disparities that can arise from deploying facial recognition technology in unregulated, real-world settings; the biases of risk prediction algorithms in the criminal justice system; and the politicization of data collection. New sets of case studies will be published twice a year on the PubPub platform.

“It has been such a pleasure working with the MITops team to launch our new peer-reviewed, open-access MIT Case Studies series in Social and Ethical Responsibilities of Computing,” notes David Kaiser, Germeshausen Professor of the History of Science and professor of physics at MIT. “The PubPub platform is easy to use and embodies many of the values we aim to highlight in SERC. More than that, the MITops team is passionate about enabling equitable, accessible scholarly publishing — of finding new, sustainable ways to share hard-won knowledge broadly. I am thrilled that Issue 1 is now available, and I look forward to working with the team for Issue 2 and beyond.” 

How MIT OpenCourseWare became an educational resource to millions around the world

“It is typical of our faculty to come up with something as bold and innovative as this,” said then-MIT president Charles Vest at a special gathering of community members and press in April 2001. “OpenCourseWare looks counterintuitive in a market-driven world. It goes against the grain of current material values. But it really is consistent with what I believe is the best about MIT … It expresses our belief in the way education can be advanced — by constantly widening access to information and by inspiring others to participate.”

In the 20 years since it began, MIT OpenCourseWare has become a pillar of the open education community, an exemplar of the MIT ethos, and an invaluable resource to millions of learners around the world. People of all ages and all walks of life have used the lectures, videos, problem sets, and other content to pursue their curiosity and passions, improve their careers, and get a leg up in their studies. Now, the team looks to the future with a clear sense of purpose, informed by the learning needs underscored by the Covid-19 pandemic. 

OpenCourseWare launched during the early days of Web 2.0 and a growing — but highly commercialized — interest in e-learning. Charles Vest had commissioned the Lifelong Learning Committee, asking its members to propose an educational technology project that would extend MIT’s reach beyond classrooms. That committee’s recommendation was to launch OpenCourseWare, a website offering all of MIT’s course materials, available for free to anyone. Within one year, OCW had published a pilot website with 50 courses and attracted worldwide acclaim. Today, OCW offers materials from over 2,570 courses spanning the MIT graduate and undergraduate curriculum, from 1,735 MIT faculty and lecturers​ from 33 academic units across all five schools, including syllabi, lecture notes, problem sets, assignments, and audiovisual content including recorded lectures. To date, OCW has been a resource for over 210 million unique users, with over 70 percent of users in 2020 coming from outside the United States.

Professor Dick KP Yue, who chaired the Lifelong Learning Committee, described the impetus for the project in the proposal: “In the digital age, institutions like MIT have a responsibility — and an opportunity — to impact learners far beyond their campuses. OCW embodies MIT’s commitment to constantly widening access to knowledge.”

The value of that commitment is borne out by learners who have shared their stories over the years — from Tooba Siddiqui in Pakistan, who had access to education through OCW when other doors were closed to her, to Anita Moreno in Nevada, who used OCW to keep up with her studies following a brain aneurysm. “I cannot emphasize enough how this site has boosted my confidence, that I am still able to comprehend and succeed in an engineering program,” says Moreno. 

Today, Professor Krishna Rajagopal, dean for digital learning, says, “It was the best thing MIT could have done at that moment for MIT and for the world.”

A revolution in the making

From its modest and experimental beginning, OCW sparked a new era in the growing open-education movement. Beyond the courses themselves, OCW has had a broad impact on the way online learning resources have evolved in higher education, setting the template for other colleges and universities undertaking similar efforts and helping launch the open education resources (OER) revolution. 

”Free access to knowledge is a powerful foundation for progress,” says OCW Director Curt Newton, “but it’s not the whole picture. OER that lifts up everyone’s right to contribute to shared knowledge, and builds everyone’s capacity to extend that knowledge, is creating new paths for us to work together on the world’s most important, complex, and rapidly evolving challenges.”

It helps that OCW and Creative Commons share family bonds. Launched the same year, electrical engineering and computer science Professor Hal Abelson was a member of the founding teams for both, and helped arrange for OCW to be the first institutional project to use Creative Commons licenses, In turn, OCW’s early adoption of Creative Commons licenses helped demonstrate their usefulness and lent credence to the burgeoning open movement. 

In 2005, OCW helped launch the OpenCourseWare Consortium (now Open Education Global), whose network of over 300 higher education institutions and related organizations have freely shared many thousands of courses, open textbooks, and other resources, and collaborated to foster widespread adoption of OERs.

At MIT, OCW has paved the way for other innovative new learning platforms, such as MITx and MicroMasters, Open Learning Library, and professional and executive learning programs. 

Integrating teachers into the experience of OCW was a key priority very early on. (Indeed, the faculty committee originally envisioned OCW as being used by educators almost exclusively — its widespread popularity among students and lifelong learners was a welcome surprise.) Educators around the world have shared their experiences of using OCW to master new content or inspire and engage students. In 2013, the team launched the OCW Educator program; now, hundreds of OCW courses include Instructor Insights sections where faculty share how they have taught their courses through text, video, and most recently, through the Chalk Radio podcast. 

“A core tenet of MIT’s mission is to create and share knowledge, empowering our own community and myriad others to bring this knowledge to bear on the world’s great challenges. From its inception, OpenCourseWare has offered a new and substantial way of realizing that mission in the 21st century,” says Rajagopal. “For individual learners, OCW is a means to expand understanding and satisfy curiosity, to support personal and professional goals, or change in their communities; for educators, it’s a resource library to help augment and strengthen their curricula, enriching the experience of so many students; for educational organizations, it’s an invitation to nurture a shared commitment to open knowledge. OCW provides invaluable resources for millions and paves the way for others to contribute in their own ways to sharing and using knowledge for the betterment of humankind.”

Living legacy

The courses on OCW have also come to reflect the way that MIT, and its relationship with the world, has grown and changed over the last two decades. Perhaps it’s no surprise that 6.0001 (Introduction to Computer Science and Programming in Python) and 18.06 (Linear Algebra) are consistently among the most-viewed courses. But the ebb and flow of traffic on OpenCourseWare reflects topics in the zeitgeist, too. When Esther Duflo and Abhijit Banerjee won the Nobel Prize for Economics in 2019, Duflo’s OCW course “The Challenge of World Poverty” spiked in popularity as people all over the world sought to understand her worldview and learn from her. A similar spike occurred with Professor Gary Gensler’s graduate-level course “Blockchain and Money” when he was nominated to serve in the Biden administration earlier this year. 

As MIT faculty have endeavored to offer students a nuanced understanding of our complex world, so too have the materials on OCW grown more expansive. Learners around the world can now delve into “Ethics for Engineers: Artificial Intelligence,” “Queer Cinema and Visual Culture,” and “Black Matters: Introduction to Black History” alongside engineering, math, and science standbys. 

“As instructors, we’re excited about what we get to do in the classroom with our students, and also it’s wonderful to have the opportunity to expand beyond the classroom, and to actually make the material that we develop for students available more broadly,” says Amah Edoh, assistant professor of anthropology and African studies and a member of the OCW Faculty Advisory Committee, whose courses “Africa and the Politics of Knowledge” and “Global Africa: Creative Cultures” are on OCW.

She also appreciates the role OCW plays in sharing MIT expertise with the world beyond engineering and science. “My particular investment in this has been around making African studies more visible at MIT … It really changes the image, the idea that others have of MIT. I think it’s particularly important to show that we also have courses in African studies specifically. Oftentimes Africa, African countries, African people are seen not as agents, but rather as a space where you go to solve problems. So to show that we can engage knowledge production in and on Africa critically, to me is very important.” 

In capturing course materials and videos, OCW does more than open windows into MIT for global learners; it also provides a unique, living archive of teaching at MIT. Alumni can revisit favorite classes or share them with colleagues, peers, or kids looking into college. High-schoolers can get a sense of what courses in different fields will entail. Faculty whose course materials are preserved on OCW have an artifact of their teaching legacy, for everyone, forever. Consider “How to Speak,” a OCW video of the late Professor Patrick Winston’s beloved Independent Activities Period course, which he taught for 40 years before passing away in 2019; posted in December 2019, it has now been viewed 3.3 million times.

Looking forward

OpenCourseWare enters its third decade on the heels of unprecedented global disruption. During the first months of the Covid-19 pandemic, when schools and businesses closed and billions of people around the world sheltered in place at home, traffic to OCW spiked to 2.2 million visits a month, a 75 percent increase from 2019. Since then, site visits have settled into a 15 percent uptick in use. More importantly, the massive shift to remote and hybrid learning over the past year has brought into sharp relief both the opportunities of online education and the disparities of access, technology, and equity for learners everywhere. In charting a course for the future, the OCW team has the opportunity to draw on 20 years of experience in addressing the issues brought to the fore in 2020. 

“The first years of OCW have been primarily about the power of access,” says Newton. “A core principle of where we’re heading in our upcoming program is the progression from giving access to knowledge to really driving towards educational equity.”

Later this year, OpenCourseWare will launch its NextGen platform and program. Its three principal aims are offering a vibrant reflection of MIT education as it evolves, delivering a more user-focused design and experience, and broadening access and usability to a larger global population. The NextGen platform will support a more dynamic experience of OCW’s robust multimedia content, allowing users to seamlessly search, browse, download, remix, and redistribute all materials more easily. Individuals can get a sneak peek of the new OCW and sign up to be a beta tester.

Another major pillar of the NextGen platform is mobile optimization, a user-friendly interface to provide readable, searchable content on any device. With 92.6 percent of internet users around the world using mobile devices at least some of the time, and with smartphone use growing at a rate of 7 percent per year, this change represents not only a catch-up to current need but also a purposeful approach to finding and engaging with future learners. 

“As we look at the next year, five years, 20 years of OpenCourseWare, our goal is to keep pace with the evolving artifacts of MIT teaching and learning, offering the best possible experience to our growing community of learners,” says Newton. “We are also committed to continually reinvesting in the OER community — working collaboratively to share resources and engage with the people and organizations at the vanguard of access and equity in education.”

MIT Open Learning will host an online celebration of OpenCourseWare’s 20th anniversary on Wednesday, April 7, from noon to 1 p.m. EDT featuring OCW leadership, MIT faculty, and learners sharing stories and ideas about the past, present, and future of open education, at MIT and beyond.

What has the pandemic revealed about the US health care system — and what needs to change?

With vaccinations for Covid-19 now underway across the nation, MIT SHASS Communications asked seven MIT scholars engaged in health and health care research to share their views on what the pandemic has revealed about the U.S. health care system — and what needs to change. Representing the fields of medicine, anthropology, political science, health economics, science writing, and medical humanities, these researchers articulate a range of opportunities for U.S. health care to become more equitable, more effective and coherent, and more prepared for the next pandemic.

Dwaipayan Banerjee, associate professor of science, technology, and society

On the heels of Ebola, Covid-19 put to rest a persistent, false binary between diseases of the rich and diseases of the poor. For several decades, health care policymakers have labored under the impression of a great epidemiological transition. This theory holds that the developed world has reached a stage in its history that it no longer needs to worry about communicable diseases. These “diseases of the poor” are only supposed to exist in distant places with weak governments and struggling economies. Not here in the United States.

On the surface, Covid-19 made clear that diseases do not respect national boundaries. More subtly, it tested the hypothesis that the global north no longer need concern itself with communicable disease. And in so doing, it undermined our assumptions about global north health-care infrastructures as paradigmatically more evolved.

Over the last decades, the United States has been focused on developing increasingly sophisticated drugs. While this effort has ushered in several technological breakthroughs, a preoccupation with magic-bullet cures has distracted from public health fundamentals. The spread of the virus revealed shortages in basic equipment and hospitals beds, the disproportionate effects of disease on the marginalized, the challenge of prevention rather than cure, the limits of insurance-based models to provide equitable care, and our unacknowledged dependence on the labor of underpaid health care workers.

To put it plainly, the pandemic did not create a crisis in U.S. health care. For many in the United States, crisis was already a precondition of care, delivered in emergency rooms and negotiated through denied insurance claims. As we begin to imagine a “new normal,” we must ask questions about the old. The pandemic made clear that the “normal” had been a privilege only for a few well-insured citizens. In its wake, can we imagine a health-care system that properly compensates labor and recognizes health care as a right, rather than a privilege only available to the marginalized when an endemic crisis is magnified by a pandemic emergency? 

Andrea Campbell, professor of political science

No doubt, the pandemic reveals the dire need to invest in public-health infrastructure to better monitor and address public-health threats in the future, and to expand insurance coverage and health care access. To my mind, however, the pandemic’s greatest significance is in revealing the racism woven into American social and economic policy.

Public policies helped create geographic and occupational segregation to begin with; inadequate racist and classist public policies do a poor job of mitigating their effects. Structural racism manifests at the individual level, with people of color suffering worse housing and exposure to toxins, less access to education and jobs, greater financial instability, poorer physical and mental health, and higher infant mortality and shorter lifespans than their white counterparts. Residential segregation means many white Americans do not see these harms.

Structural racism also materializes at the societal level, a colossal waste of human capital that undercuts the nation’s economic growth, as social and economic policy expert Heather McGhee shows in her illuminating book, “The Sum of Us.” These society-wide costs are hidden as well; it is difficult to comprehend the counterfactual of what growth would look like if all Americans could prosper.

My hope is that the pandemic renders this structural inequality visible. There is little point in improving medical or public-health systems if we fail to address the structural drivers of poor health. We must seize the opportunity to improve housing, nutrition, and schools; to enforce regulations on workplace safety, redlining, and environmental hazards; and to implement paid sick leave and paid family leave, among other changes. It has been too easy for healthy, financially stable, often white Americans to think the vulnerable are residual. The pandemic has revealed that they are in fact central. It’s time to invest for a more equitable future.

Jonathan Gruber, Ford Professor of Economics

The Covid-19 pandemic is the single most important health event of the past 100 years, and as such has enormous implications for our health care system. Most significantly, it highlights the importance of universal, non-discriminatory health insurance coverage in the United States. The primary source of health insurance for Americans is their job, and with unemployment reaching its highest level since the Great Depression, tens of millions of workers lost, at least temporarily, their insurance coverage.

Moreover, even once the economy recovers, millions of Americans will have a new preexisting condition, Covid-19. That’s why it is critical to build on the initial successes of the Affordable Care Act to continue to move toward a safety net that provides insurance options for all without discrimination.

The pandemic has also illustrated the power of remote health care. The vast majority of patients in the United States have had their first experience with telehealth during the pandemic and found it surprisingly satisfactory. More use of telehealth can lead to increased efficiency of health care delivery as well as allowing our system to reach underserved areas more effectively.

The pandemic also showed us the value of government sponsorship of innovation in the health sciences. The speed with which the vaccines were developed is breathtaking. But it would not have been possible without decades of National Institute of Health investments such as the Human Genome Project, nor without the large incentives put in place by Operation Warp Speed. Even in peacetime, the government has a critical role to play in promoting health care innovation

The single most important change that we need to make to be prepared for the next pandemic is to recognize that proper preparation is, by definition, overpreparation. Unless we are prepared for the next pandemic that doesn’t happen, we won’t possibly be ready for the next pandemic that does.

This means working now, while the memory is fresh, to set up permanent, mandatorily funded institutions to do global disease surveillance, extensive testing of any at-risk populations when new diseases are detected, and a permanent government effort to finance underdeveloped vaccines and therapeutics.

Jeffrey Harris, professor emeritus of economics and a practicing physician

The pandemic has revealed the American health care system to be a non-system. In a genuine system, health care providers would coordinate their services. Yet when Elmhurst Hospital in Queens was overrun with patients, some 3,500 beds remained available in other New York hospitals. In a genuine system, everyone would have a stable source of care at a health maintenance organization (HMO). While our country has struggled to distribute the Covid-19 vaccine efficiently and equitably, Israel, which has just such an HMO-based system, has broken world records for vaccination.

Germany, which has all along had a robust public health care system, was accepting sick patients from Italy, Spain, and France. Meanwhile, U.S. hospitals were in financial shock and fee-for-service-based physician practices were devastated. We need to move toward a genuine health care system that can withstand shocks like the Covid-19 pandemic. There are already models out there to imitate.

We need to strengthen our worldwide pandemic and global health crisis alert systems. Despite concerns about China’s early attempts to suppress the bad news about Covid-19, the world was lucky that Chinese investigators posted the full genome of SARS-CoV-2 in January 2020 — the singular event that triggered the search for a vaccine. With the recurrent threat of yet another pandemic — after H1N1, SARS, MERS, Ebola, and now SARS-Cov-2 — along with the anticipated health consequences of global climate change, we can’t simply cross our fingers and hope to get lucky again.

Erica Caple James, associate professor of medical anthropology and urban studies

The coronavirus pandemic has revealed some of the limits of the American medical and health care system and demonstrated many of the social determinants of health. Neither the risks of infection nor the probability of suffering severe illness are equal across populations. Each depends on socioeconomic factors such as type of employment, mode of transportation, housing status, environmental vulnerability, and capacity to prevent spatial exposure, as well as “preexisting” health conditions like diabetes, obesity, and chronic respiratory illness.

Such conditions are often determined by race, ethnicity, gender, and “biology,” but also poverty, cultural and linguistic facility, health literacy, and legal status. In terms of mapping the prevalence of infection, it can be difficult to trace contacts among persons who are regular users of medical infrastructure. However, it can be extraordinarily difficult to do so among persons who lack or fear such visibility, especially when a lack of trust can color patient-clinician relationships.

One’s treatment within medical and health care systems may also reflect other health disparities — such as when clinicians discount patient symptom reports because of sociocultural, racial, or gender stereotypes, or when technologies are calibrated to the norm of one segment of the population and fail to account for the severity of disease in others.

The pandemic has also revealed the biopolitics and even the “necropolitics” of care — when policymakers who are aware that disease and death fall disproportionately in marginal populations make public-health decisions that deepen the risks of exposure of these more vulnerable groups. The question becomes, “Whose lives are deemed disposable?” Similarly, which populations — and which regions of the world — are prioritized for treatment and protective technologies like vaccines and to what degree are such decisions politicized or even racialized?

Although no single change will address all of these disparities in health status and access to treatment, municipal, state, and federal policies aimed at improving the American health infrastructure — and especially those that expand the availability and distribution of medical resources to underserved populations — could greatly improve health for all.

Seth Mnookin, professor of science writing

The Covid-19 pandemic adds yet another depressing data point to how the legacy and reality of racism and white supremacy in America is lethal to historically marginalized groups. A number of recent studies have shown that Black, Hispanic, Asian, and Native Americans have a significantly higher risk of infection, hospitalization, and death compared to white Americans.

The reasons are not hard to identify: Minority populations are less likely to have access to healthy food options, clean air and water, high-quality housing, and consistent health care. As a result, they’re more likely to have conditions that have been linked to worse outcomes in Covid patients, including diabetes, hypertension, and obesity.

Marginalized groups are also more likely to be socioeconomically disadvantaged — which means they’re more likely to work in service and manufacturing industries that put them in close contact with others, use public transportation, rely on overcrowded schools and day cares, and live in closer proximity to other households. Even now, more vaccines are going to wealthier people who have the time and technology required to navigate the time-consuming vaccine signup process and fewer to communities with the highest infection rates.

This illustrates why addressing inequalities in Americans’ health requires addressing inequalities that infect every part of society. Moving forward, our health care systems should take a much more active role in advocating for racial and socioeconomic justice — not only because it is the right thing to do, but because it is one of the most effective ways to improve health outcomes for the country as a whole.

On a global level, the pandemic has illustrated that preparedness and economic resources are no match for lies and misinformation. The United States, Brazil, and Mexico have, by almost any metric, handled the pandemic worse than virtually every other country in the world. The main commonality is that all three were led by presidents who actively downplayed the virus and fought against lifesaving public health measures. Without a global commitment to supporting accurate, scientifically based information, there is no amount of planning and preparation that can outflank the spread of lies.

Parag Pathak, Class of 1922 Professor of Economics
 
The pandemic has revealed the strengths and weaknesses of America’s health care systems in an extreme way. The development and approval of three vaccines in roughly one year after the start of the pandemic is a phenomenal achievement. At the same time, there are many innovations for which there have been clear fumbles, including the deployment of rapid tests and contact tracing.  

The other aspect the pandemic has made apparent is the extreme inequality in America’s health systems. Disadvantaged communities have borne the brunt of Covid-19 both in terms of health outcomes and also economically. I’m hopeful that the pandemic will spur renewed focus on protecting the most vulnerable members of society.

A pandemic is a textbook situation in economics of externalities, where an individual’s decision has external effects on others. In such situations, there can be major gains to coordination. In the United States, the initial response was poorly coordinated across states. I think the same criticism applies globally. We have not paid enough attention to population health on a global scale.

One lesson I take from the relative success of the response of East Asian countries is that centralized and coordinated health systems are more equipped to manage population health, especially during a pandemic. We’re already seeing the need for international cooperation with vaccine supply and monitoring of new variants. It will be imperative that we continue to invest in developing the global infrastructure to facilitate greater cooperation for the next pandemic.

Prepared by MIT SHASS Communications
Editor and designer: Emily Hiestand
Consulting editor: Kathryn O’Neill

What has the pandemic revealed about the US health care system — and what needs to change?

With vaccinations for Covid-19 now underway across the nation, MIT SHASS Communications asked seven MIT scholars engaged in health and health care research to share their views on what the pandemic has revealed about the U.S. health care system — and what needs to change. Representing the fields of medicine, anthropology, political science, health economics, science writing, and medical humanities, these researchers articulate a range of opportunities for U.S. health care to become more equitable, more effective and coherent, and more prepared for the next pandemic.

Dwaipayan Banerjee, associate professor of science, technology, and society

On the heels of Ebola, Covid-19 put to rest a persistent, false binary between diseases of the rich and diseases of the poor. For several decades, health care policymakers have labored under the impression of a great epidemiological transition. This theory holds that the developed world has reached a stage in its history that it no longer needs to worry about communicable diseases. These “diseases of the poor” are only supposed to exist in distant places with weak governments and struggling economies. Not here in the United States.

On the surface, Covid-19 made clear that diseases do not respect national boundaries. More subtly, it tested the hypothesis that the global north no longer need concern itself with communicable disease. And in so doing, it undermined our assumptions about global north health-care infrastructures as paradigmatically more evolved.

Over the last decades, the United States has been focused on developing increasingly sophisticated drugs. While this effort has ushered in several technological breakthroughs, a preoccupation with magic-bullet cures has distracted from public health fundamentals. The spread of the virus revealed shortages in basic equipment and hospitals beds, the disproportionate effects of disease on the marginalized, the challenge of prevention rather than cure, the limits of insurance-based models to provide equitable care, and our unacknowledged dependence on the labor of underpaid health care workers.

To put it plainly, the pandemic did not create a crisis in U.S. health care. For many in the United States, crisis was already a precondition of care, delivered in emergency rooms and negotiated through denied insurance claims. As we begin to imagine a “new normal,” we must ask questions about the old. The pandemic made clear that the “normal” had been a privilege only for a few well-insured citizens. In its wake, can we imagine a health-care system that properly compensates labor and recognizes health care as a right, rather than a privilege only available to the marginalized when an endemic crisis is magnified by a pandemic emergency? 

Andrea Campbell, professor of political science

No doubt, the pandemic reveals the dire need to invest in public-health infrastructure to better monitor and address public-health threats in the future, and to expand insurance coverage and health care access. To my mind, however, the pandemic’s greatest significance is in revealing the racism woven into American social and economic policy.

Public policies helped create geographic and occupational segregation to begin with; inadequate racist and classist public policies do a poor job of mitigating their effects. Structural racism manifests at the individual level, with people of color suffering worse housing and exposure to toxins, less access to education and jobs, greater financial instability, poorer physical and mental health, and higher infant mortality and shorter lifespans than their white counterparts. Residential segregation means many white Americans do not see these harms.

Structural racism also materializes at the societal level, a colossal waste of human capital that undercuts the nation’s economic growth, as social and economic policy expert Heather McGhee shows in her illuminating book, “The Sum of Us.” These society-wide costs are hidden as well; it is difficult to comprehend the counterfactual of what growth would look like if all Americans could prosper.

My hope is that the pandemic renders this structural inequality visible. There is little point in improving medical or public-health systems if we fail to address the structural drivers of poor health. We must seize the opportunity to improve housing, nutrition, and schools; to enforce regulations on workplace safety, redlining, and environmental hazards; and to implement paid sick leave and paid family leave, among other changes. It has been too easy for healthy, financially stable, often white Americans to think the vulnerable are residual. The pandemic has revealed that they are in fact central. It’s time to invest for a more equitable future.

Jonathan Gruber, Ford Professor of Economics

The Covid-19 pandemic is the single most important health event of the past 100 years, and as such has enormous implications for our health care system. Most significantly, it highlights the importance of universal, non-discriminatory health insurance coverage in the United States. The primary source of health insurance for Americans is their job, and with unemployment reaching its highest level since the Great Depression, tens of millions of workers lost, at least temporarily, their insurance coverage.

Moreover, even once the economy recovers, millions of Americans will have a new preexisting condition, Covid-19. That’s why it is critical to build on the initial successes of the Affordable Care Act to continue to move toward a safety net that provides insurance options for all without discrimination.

The pandemic has also illustrated the power of remote health care. The vast majority of patients in the United States have had their first experience with telehealth during the pandemic and found it surprisingly satisfactory. More use of telehealth can lead to increased efficiency of health care delivery as well as allowing our system to reach underserved areas more effectively.

The pandemic also showed us the value of government sponsorship of innovation in the health sciences. The speed with which the vaccines were developed is breathtaking. But it would not have been possible without decades of National Institute of Health investments such as the Human Genome Project, nor without the large incentives put in place by Operation Warp Speed. Even in peacetime, the government has a critical role to play in promoting health care innovation

The single most important change that we need to make to be prepared for the next pandemic is to recognize that proper preparation is, by definition, overpreparation. Unless we are prepared for the next pandemic that doesn’t happen, we won’t possibly be ready for the next pandemic that does.

This means working now, while the memory is fresh, to set up permanent, mandatorily funded institutions to do global disease surveillance, extensive testing of any at-risk populations when new diseases are detected, and a permanent government effort to finance underdeveloped vaccines and therapeutics.

Jeffrey Harris, professor emeritus of economics and a practicing physician

The pandemic has revealed the American health care system to be a non-system. In a genuine system, health care providers would coordinate their services. Yet when Elmhurst Hospital in Queens was overrun with patients, some 3,500 beds remained available in other New York hospitals. In a genuine system, everyone would have a stable source of care at a health maintenance organization (HMO). While our country has struggled to distribute the Covid-19 vaccine efficiently and equitably, Israel, which has just such an HMO-based system, has broken world records for vaccination.

Germany, which has all along had a robust public health care system, was accepting sick patients from Italy, Spain, and France. Meanwhile, U.S. hospitals were in financial shock and fee-for-service-based physician practices were devastated. We need to move toward a genuine health care system that can withstand shocks like the Covid-19 pandemic. There are already models out there to imitate.

We need to strengthen our worldwide pandemic and global health crisis alert systems. Despite concerns about China’s early attempts to suppress the bad news about Covid-19, the world was lucky that Chinese investigators posted the full genome of SARS-CoV-2 in January 2020 — the singular event that triggered the search for a vaccine. With the recurrent threat of yet another pandemic — after H1N1, SARS, MERS, Ebola, and now SARS-Cov-2 — along with the anticipated health consequences of global climate change, we can’t simply cross our fingers and hope to get lucky again.

Erica Caple James, associate professor of medical anthropology and urban studies

The coronavirus pandemic has revealed some of the limits of the American medical and health care system and demonstrated many of the social determinants of health. Neither the risks of infection nor the probability of suffering severe illness are equal across populations. Each depends on socioeconomic factors such as type of employment, mode of transportation, housing status, environmental vulnerability, and capacity to prevent spatial exposure, as well as “preexisting” health conditions like diabetes, obesity, and chronic respiratory illness.

Such conditions are often determined by race, ethnicity, gender, and “biology,” but also poverty, cultural and linguistic facility, health literacy, and legal status. In terms of mapping the prevalence of infection, it can be difficult to trace contacts among persons who are regular users of medical infrastructure. However, it can be extraordinarily difficult to do so among persons who lack or fear such visibility, especially when a lack of trust can color patient-clinician relationships.

One’s treatment within medical and health care systems may also reflect other health disparities — such as when clinicians discount patient symptom reports because of sociocultural, racial, or gender stereotypes, or when technologies are calibrated to the norm of one segment of the population and fail to account for the severity of disease in others.

The pandemic has also revealed the biopolitics and even the “necropolitics” of care — when policymakers who are aware that disease and death fall disproportionately in marginal populations make public-health decisions that deepen the risks of exposure of these more vulnerable groups. The question becomes, “Whose lives are deemed disposable?” Similarly, which populations — and which regions of the world — are prioritized for treatment and protective technologies like vaccines and to what degree are such decisions politicized or even racialized?

Although no single change will address all of these disparities in health status and access to treatment, municipal, state, and federal policies aimed at improving the American health infrastructure — and especially those that expand the availability and distribution of medical resources to underserved populations — could greatly improve health for all.

Seth Mnookin, professor of science writing

The Covid-19 pandemic adds yet another depressing data point to how the legacy and reality of racism and white supremacy in America is lethal to historically marginalized groups. A number of recent studies have shown that Black, Hispanic, Asian, and Native Americans have a significantly higher risk of infection, hospitalization, and death compared to white Americans.

The reasons are not hard to identify: Minority populations are less likely to have access to healthy food options, clean air and water, high-quality housing, and consistent health care. As a result, they’re more likely to have conditions that have been linked to worse outcomes in Covid patients, including diabetes, hypertension, and obesity.

Marginalized groups are also more likely to be socioeconomically disadvantaged — which means they’re more likely to work in service and manufacturing industries that put them in close contact with others, use public transportation, rely on overcrowded schools and day cares, and live in closer proximity to other households. Even now, more vaccines are going to wealthier people who have the time and technology required to navigate the time-consuming vaccine signup process and fewer to communities with the highest infection rates.

This illustrates why addressing inequalities in Americans’ health requires addressing inequalities that infect every part of society. Moving forward, our health care systems should take a much more active role in advocating for racial and socioeconomic justice — not only because it is the right thing to do, but because it is one of the most effective ways to improve health outcomes for the country as a whole.

On a global level, the pandemic has illustrated that preparedness and economic resources are no match for lies and misinformation. The United States, Brazil, and Mexico have, by almost any metric, handled the pandemic worse than virtually every other country in the world. The main commonality is that all three were led by presidents who actively downplayed the virus and fought against lifesaving public health measures. Without a global commitment to supporting accurate, scientifically based information, there is no amount of planning and preparation that can outflank the spread of lies.

Parag Pathak, Class of 1922 Professor of Economics
 
The pandemic has revealed the strengths and weaknesses of America’s health care systems in an extreme way. The development and approval of three vaccines in roughly one year after the start of the pandemic is a phenomenal achievement. At the same time, there are many innovations for which there have been clear fumbles, including the deployment of rapid tests and contact tracing.  

The other aspect the pandemic has made apparent is the extreme inequality in America’s health systems. Disadvantaged communities have borne the brunt of Covid-19 both in terms of health outcomes and also economically. I’m hopeful that the pandemic will spur renewed focus on protecting the most vulnerable members of society.

A pandemic is a textbook situation in economics of externalities, where an individual’s decision has external effects on others. In such situations, there can be major gains to coordination. In the United States, the initial response was poorly coordinated across states. I think the same criticism applies globally. We have not paid enough attention to population health on a global scale.

One lesson I take from the relative success of the response of East Asian countries is that centralized and coordinated health systems are more equipped to manage population health, especially during a pandemic. We’re already seeing the need for international cooperation with vaccine supply and monitoring of new variants. It will be imperative that we continue to invest in developing the global infrastructure to facilitate greater cooperation for the next pandemic.

Prepared by MIT SHASS Communications
Editor and designer: Emily Hiestand
Consulting editor: Kathryn O’Neill

Connecting history with the present moment

In spring 2020, as people all over the world confronted the daily reality of living through the Covid-19 pandemic, many wondered how previous generations of humans navigated similar crises. At MIT, an interdisciplinary team of humanistic faculty decided to explore this question in a course that broke ground as a live, free MIT class, held in an open public webinar format so that anyone who wanted to attend could do so, from anywhere in the world.

As the course began, hundreds of people from around the world responded to the opportunity and joined students in 21H.000 (History of Now: Plagues and Pandemics). In hour-long, weekly sessions, they heard experts explain the origins and ramifications of a wide range of devastating pandemics — from the Black Death, which killed as many as 200 million people during the Middle Ages, to the 1918 flu pandemic, as well as many lesser-known plagues.

Live, in real-time, around the world

“This was a live MIT class happening in real-time that was open to an external audience,” says Malick Ghachem, an associate professor of history who created and taught the First-Year Discovery subject in concert with two of his History Section colleagues — Associate Professor Sana Aiyar and Professor Elizabeth Wood — as well as two faculty from the Program in Science, Technology, and Society, Professor Kate Brown and Associate Professor Dwai Banerjee.

MIT’s History of Now, a recent course concept that had run once before, enables students to take a deep dive into topics in the current headlines, exploring current issues with the additional context of historical perspectives. In the first iteration of the course, MIT history professors rotated in to give students a presentation connecting present-day issues to their area of research and expertise. Ghachem, for example, engaged the students in a comparison of impeachment in the 18th century and today.

Webinar format expanded the range of expertise

For the pandemic edition, the History of Now course format changed abruptly from an in-person classroom experience to a webinar series. The new format greatly expanded the scope of expertise that was available to students, Ghachem says. Guest speakers included faculty members from Columbia University, Georgetown University, and the University of Cambridge in the United Kingdom, for example, sharing expertise in fields ranging from microbial biology to economics, anthropology, and medicine. Weekly discussion topics included “Public Health, Biopower, and Inequality,” “Immigration and Contagion,” “Race and Pandemics,” and “Sovereignties, Plagues, and Policing.”

“These were eye-opening sessions with people who have studied these issues in great detail. Covid-19 was something they could put in very deep context,” Ghachem says.

Explorations from public health to immigration to biopower

First-year student Sagnik Anupam says he particularly enjoyed the talk by Kathryn Olivarius, an assistant professor of history at Stanford University who described how disease status has historically been used as a dividing line in society, conferring privilege on those considered immune (due to prior disease exposure, for example). “I found Professor Olivarius’s comments on the weaponization of immunoprivilege the most interesting aspect of the course,” he says. “She highlighted how in New Orleans in the 19th century, yellow fever was weaponized to extend both economic as well as racial divides.”

First-year undergraduate Charvi Sharma says the class “opened her eyes” to the broad range of factors that determine the course of a pandemic. “For example, when thinking about when a pandemic ‘ends,’ we can’t only look at the number of cases of disease,” she says. “While this is an indicative factor of the decline of a pandemic, there are many other social, cultural, and economic implications that can’t be ignored. By discussing past plagues and pandemics, we were able to uncover a great deal about the present Covid-19 pandemic.”

Senior Helen Wang was especially interested in Professor Cindy Ermus’ comment “that living through a pandemic had provided her invaluable insight on those in the past who also experienced life during a pandemic. I found this concept fascinating,” says Wang. “Until hearing this remark, I believed that the study of history was intended to shed light on present conditions, rather than enlightenment happening in the other direction. This course was a steady reminder of the role that history plays in informing our lives, as well as the active role we play in interpreting it.”

The hunger for historical knowledge

Faculty members note that there were some drawbacks to the novel webinar format. For example, since the instructors could not interact with students during the one-hour class sessions, they set up extra time to discuss the materials with the enrolled MIT students. “While virtual learning environments open up possibilities for international collaborative pedagogy, they also present their own challenges,” Banerjee says. “The feeling of Zoom fatigue, an outcome of the loss of social connectivity during this crisis, continues to push us to imagine new ways of learning.”

That said, since MIT’s First-Year Discovery classes are one-credit classes with intentionally light loads, the faculty felt comfortable opening History of Now up to other learners. “People have a hunger for historical knowledge. If people have this hunger and we can satisfy it, why not?” Ghachem says, comparing the class to some of the educational offerings of other schools, such as the Executive Education arm of the MIT Sloan School of Management, which offers training and certificate programs. “In a way this was an experiment in a kind of MIT-SHASS extension school.”

While also similar in some ways to the free MIT courses offered to the public via the MITx and edX platforms, the History of Now experimental webinar course was live, rather than prerecorded, and thus far more economical to produce.

A contribution to engaged citizenship

Faculty members are now discussing what the History of Now will look like in fall 2021. They are considering a new, six-unit, half-semester version of the course — and they continue to think about ways to fine-tune the format of a webinar course so it could simultaneously expand public access to knowledge and provide enrolled MIT students with ample, meaningful engagement with instructors.
 
Ghachem notes that “One thing this course taught us is that there are a lot of people out there who, if they could sit in on an MIT class, they would.” Wood agrees, observing that webinar courses like “History of Now” that invite the public to think together about the public good “are one way for universities to contribute to engaged citizenship.”

Brown says the experiment gave her a new appreciation of the value of online education. “I would love to see such a course directed at high school students aspiring to attend an institution such as MIT,” she says. “One major issue when you don’t live near a large metropolitan area is getting access to libraries, educators, and learning experiences. We have learned in the pandemic that such barriers no longer need exist. We can reach far more people than before. That’s an exciting horizon.”

Story prepared by MIT SHASS Communications
Editor and designer: Emily Hiestand, communications director
Senior Writer: Katherine O’Neill

3 Questions: Artificial intelligence for health care equity

The potential of artificial intelligence to bring equity in health care has spurred significant research efforts. Racial, gender, and socioeconomic disparities have traditionally afflicted health care systems in ways that are difficult to detect and quantify. New AI technologies, however, are providing a platform for change.

Regina Barzilay, the School of Engineering Distinguished Professor of AI and Health and faculty co-lead of AI for the MIT Jameel Clinic; Fotini Christia, professor of political science and director of the MIT Sociotechnical Systems Research Center; and Collin Stultz, professor of electrical engineering and computer science and a cardiologist at Massachusetts General Hospital — discuss here the role of AI in equitable health care, current solutions, and policy implications. The three are co-chairs of the AI for Healthcare Equity Conference, taking place April 12.

Q: How can AI help address racial, gender, and socioeconomic disparities in health-care systems?

Stultz: Many factors contribute to economic disparities in health care systems. For one, there is little doubt that inherent human bias contributes to disparate health outcomes in marginalized populations. Although bias is an inescapable part of the human psyche, it is insidious, pervasive, and hard to detect. Individuals, in fact, are notoriously poor at detecting preexisting bias in their own perception of the world — a fact that has driven the development of implicit association tests that allow one to understand how underlying bias can affect decision-making.  

AI provides a platform for the development of methods that can make personalized medicine a reality, thereby ensuring that clinical decisions are made objectively with the goal of minimizing adverse outcomes across different populations. Machine learning, in particular, describes a set of methods that help computers learn from data. In principle, these methods can offer unbiased predictions that are based only on objective analyses of the underlying data.

Unfortunately, however, bias not only affects how individuals perceive the world around them, it also influences the datasets we use to build models. Observational datasets that store patient features and outcomes often reflect the underlying bias of health care providers; e.g., certain treatments may be preferentially offered to those who have high socioeconomic status. In short, algorithms can inherit our own biases. Making personalized medicine a reality is therefore predicated on our ability to develop and deploy unbiased tools that learn the patient-specific decisions from observational clinical data. Central to the success of this endeavor is the development of methods that can identify algorithmic bias and suggest mitigation strategies when bias is identified.

Informed, objective, and patient-specific clinical decisions are the future of modern clinical care. Machine learning will go a long way to making this a reality — achieving data-driven clinical insights devoid of implicit prejudice that can influence health-care decisions.

Q: What are some current AI solutions being developed in this space?

Barzilay: In most cases, biased predictions can be attributed to distributional properties of the training data. For instance, when some population is underrepresented in the training data, the resulting classifier is likely to underperform on this group. By default, models are optimized for the overall performance, thus inadvertently preferring to fit the majority class, at the expense of the rest. If we are aware of such minority groups in the data, we have multiple means to steer our learning algorithm towards fair behavior. For example, we can modify the learning objective where we enforce consistent accuracy across different groups, or reweigh the significance of training examples, amplifying “the voice” of the minority group.

Another common source of bias relates to “nuisance variations” where classification labels exhibit idiosyncratic correlations with some input features which are dataset-specific and are unlikely to generalize. In one infamous dataset with such property, health status of patients with the same medical history depended on their race. This bias was an unfortunate artifact of the way training data was constructed, but it resulted in systematic discrimination of Black patients. If such biases are known beforehand, we can mitigate their effect by forcing the model to reduce the effect of such attributes. In many cases though, biases of our training data are unknown. It is safe to assume that the environment in which the model will be applied is likely to exhibit some distributional divergence from the training data. To improve a model’s tolerance to such shifts, a number of approaches (like invariant risk minimization) explicitly train the model to robustly generalize to new environments.

However, we should be aware that algorithms are not magic wands that can correct all wrongs in messy, real-world training data. This is especially true when we are not aware of the peculiarity of a specific dataset. The latter scenario is unfortunately common in the health care domain where data curation and machine learning are often performed by different teams. These “hidden” biases have already resulted in deployed AI tools that systematically err on certain populations (like the model described above). In such cases, it is essential to provide physicians with tools that enable them to understand the rationale behind model predictions and detect biased predictions as soon as possible. A large body of work in machine learning is dedicated today to developing transparent models that can communicate their internal reasoning to users. At this point, our understanding of what types of rationales are particularly useful for doctors is limited, since AI tools are not yet part of routine medical practice. Therefore, one of the key goals of MIT’s Jameel Clinic is to deploy clinical AI algorithms in hospitals around the world and empirically study their performance in different populations and clinical settings. This data will inform the development of the next generation of self-explainable and fair AI tools.  

Q: What are the policy implications for government agencies and the industry of more equitable AI for health care?

Christia: The use of AI in health care is now a reality and for government agencies and the industry to reap the benefits of a more equitable AI for health care, they need to create an AI ecosystem. They have to work together closely and engage with clinicians and patients to prioritize the quality of the AI tools that get employed in this space, making sure they are safe and ready for prime-time. This means that AI tools that get deployed have to be well-tested and to lead to improvements in both clinician capacity and patient experience.

To that effect, government and industry players need to think about educational campaigns that inform health practitioners of the importance of specific AI interventions in complementing and augmenting their work to address equity. Beyond clinicians, there also has to be a focus on building confidence with minority patients that the introduction of these AI tools will result in overall better and more equitable care. It is particularly important to also be transparent about what the use of AI in health means for the individual patient, as well as assuage data privacy concerns of patients from minority populations who often lack trust in a “well-intentioned” health care system, given historical transgressions against them.

In the regulatory realm, government agencies would need to put together a framework that would allow them to have clarity over AI funding and liability with the industry and health care professionals so the highest-quality AI tools get deployed while also minimizing the associated risks for clinicians and patients using them. Regulations would need to make clear that the clinicians are not fully outsourcing their responsibility to the machine and outline the levels of professional accountability for their patients’ health. Working closely with the industry, clinicians and patients, government agencies would also have to monitor through data and patient experience the actual effectiveness of AI tools in addressing health care disparities on the ground, and be attuned to improving them.

Study reveals plunge in lithium-ion battery costs

The cost of the rechargeable lithium-ion batteries used for phones, laptops, and cars has fallen dramatically over the last three decades, and has been a major driver of the rapid growth of those technologies. But attempting to quantify that cost decline has produced ambiguous and conflicting results that have hampered attempts to project the technology’s future or devise useful policies and research priorities.

Now, MIT researchers have carried out an exhaustive analysis of the studies that have looked at the decline in the prices these batteries, which are the dominant rechargeable technology in today’s world. The new study looks back over three decades, including analyzing the original underlying datasets and documents whenever possible, to arrive at a clear picture of the technology’s trajectory.

The researchers found that the cost of these batteries has dropped by 97 percent since they were first commercially introduced in 1991. This rate of improvement is much faster than many analysts had claimed and is comparable to that of solar photovoltaic panels, which some had considered to be an exceptional case. The new findings are reported today in the journal Energy and Environmental Science, in a paper by MIT postdoc Micah Ziegler and Associate Professor Jessika Trancik.

While it’s clear that there have been dramatic cost declines in some clean-energy technologies such as solar and wind, Trancik says, when they started to look into the decline in prices for lithium-ion batteries, “we saw that there was substantial disagreement as to how quickly the costs of these technologies had come down.” Similar disagreements showed up in tracing other important aspects of battery development, such as the ever-improving energy density (energy stored within a given volume) and specific energy (energy stored within a given mass).

“These trends are so consequential for getting us to where we are right now, and also for thinking about what could happen in the future,” says Trancik, who is an associate professor in MIT’s Institute for Data, Systems and Society. While it was common knowledge that the decline in battery costs was an enabler of the recent growth in sales of electric vehicles, for example, it was unclear just how great that decline had been. Through this detailed analysis, she says, “we were able to confirm that yes, lithium-ion battery technologies have improved in terms of their costs, at rates that are comparable to solar energy technology, and specifically photovoltaic modules, which are often held up as kind of the gold standard in clean energy innovation.”

It may seem odd that there was such great uncertainty and disagreement about how much lithium-ion battery costs had declined, and what factors accounted for it, but in fact much of the information is in the form of closely held corporate data that is difficult for researchers to access. Most lithium-ion batteries are not sold directly to consumers — you can’t run down to your typical corner drugstore to pick up a replacement battery for your iPhone, your PC, or your electric car. Instead, manufacturers buy lithium-ion batteries and build them into electronics and cars. Large companies like Apple or Tesla buy batteries by the millions, or manufacture them themselves, for prices that are negotiated or internally accounted for but never publicly disclosed.

In addition to helping to boost the ongoing electrification of transportation, further declines in lithium-ion battery costs could potentially also increase the batteries’ usage in stationary applications as a way of compensating for the intermittent supply of clean energy sources such as solar and wind. Both applications could play a significant role in helping to curb the world’s emissions of climate-altering greenhouse gases. “I can’t overstate the importance of these trends in clean energy innovation for getting us to where we are right now, where it starts to look like we could see rapid electrification of vehicles and we are seeing the rapid growth of renewable energy technologies,” Trancik says. “Of course, there’s so much more to do to address climate change, but this has really been a game changer.”

The new findings are not just a matter of retracing the history of battery development, but of helping to guide the future, Ziegler points out. Combing all of the published literature on the subject of the cost reductions in lithium-ion cells, he found “very different measures of the historical improvement. And across a variety of different papers, researchers were using these trends to make suggestions about how to further reduce costs of lithium-ion technologies or when they might meet cost targets.” But because the underlying data varied so much, “the recommendations that the researchers were making could be quite different.” Some studies suggested that lithium-ion batteries would not fall in cost quickly enough for certain applications, while others were much more optimistic. Such differences in data can ultimately have a real impact on the setting of research priorities and government incentives.

The researchers dug into the original sources of the published data, in some cases finding that certain primary data had been used in multiple studies that were later cited as separate sources, or that the original data sources had been lost along the way. And while most studies have focused only on the cost, Ziegler says it became clear that such a one-dimensional analysis might underestimate how quickly lithium-ion technologies improved; in addition to cost, weight and volume are also key factors for both vehicles and portable electronics. So, the team added a second track to the study, analyzing the improvements in these parameters as well.

“Lithium-ion batteries were not adopted because they were the least expensive technology at the time,” Ziegler says. “There were less expensive battery technologies available. Lithium-ion technology was adopted because it allows you to put portable electronics into your hand, because it allows you to make power tools that last longer and have more power, and it allows us to build cars” that can provide adequate driving range. “It felt like just looking at dollars per kilowatt-hour was only telling part of the story,” he says.

That broader analysis helps to define what may be possible in the future, he adds: “We’re saying that lithium-ion technologies might improve more quickly for certain applications than would be projected by just looking at one measure of performance. By looking at multiple measures, you get essentially a clearer picture of the improvement rate, and this suggests that they could maybe improve more rapidly for applications where the restrictions on mass and volume are relaxed.”

Trancik adds the new study can play an important role in energy-related policymaking. “Published data trends on the few clean technologies that have seen major cost reductions over time, wind, solar, and now lithium-ion batteries, tend to be referenced over and over again, and not only in academic papers but in policy documents and industry reports,” she says. “Many important climate policy conclusions are based on these few trends. For this reason, it is important to get them right. There’s a real need to treat the data with care, and to raise our game overall in dealing with technology data and tracking these trends.”

“Battery costs determine price parity of electric vehicles with internal combustion engine vehicles,” says Venkat Viswanathan, an associate professor of mechanical engineering at Carnegie Mellon University, who was not associated with this work. “Thus, projecting battery cost declines is probably one of the most critical challenges in ensuring an accurate understanding of adoption of electric vehicles.”

Viswanathan adds that “the finding that cost declines may occur faster than previously thought will enable broader adoption, increasing volumes, and leading to further cost declines. … The datasets curated, analyzed and released with this paper will have a lasting impact on the community.”

The work was supported by the Alfred P. Sloan Foundation.

Transforming lives by providing safe drinking water

As a child, Susan Murcott ’90 SM ’92 saw firsthand the long-term impact that water- and food-borne illness can have on people.

At age 16, her maternal grandmother contracted polio, which can be transmitted through direct contact with someone infected with the virus or, occasionally, through contaminated food and water. As a result of the illness, she was forever paralyzed from the waist down. Though Murcott didn’t know it at the time, her decades-long career focusing on clean water access would bring her in close collaboration with countless others around the world whose lives, like her grandmother’s, are impacted by unsafe drinking water.

Murcott is an MIT environmental engineer, social entrepreneur, and educator who has spent her lifetime collaboratively developing and implementing effective, affordable solutions to provide safe water to the world’s neediest.

“My core work has been focused on water, sanitation, and hygiene,” Murcott says. “It’s not sexy, it’s not a money maker, and it’s not high-profile news even though there are more childhood deaths each year attributable to water-related diseases than to Covid-19.”

Globally, 2.2 billion people lack safely managed water and 4.2 billion lack basic sanitation. Polluted water is one of the world’s leading causes of disease and death, particularly for children under the age of 5. Furthermore, women and children bear the disproportionate burden of securing household water, limiting their ability to focus on education, employment, and other opportunities for economic and social advancement.

“I’ve spent 30 years trying to wake people up to the reality of the importance of safe drinking water, both given my family history and travels around the world,” says Murcott. “I feel like it’s still an invisible problem — invisible, at least, to those of us who are privileged enough to take safe water, sanitation, and hygiene for granted.”

Throughout her time at MIT — as a student, then a senior lecturer in the Department of Civil and Environmental Engineering, and now as a lecturer at MIT D-Lab and a principal investigator driving water solutions innovations through the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) — Murcott has addressed these challenges head-on.

Murcott’s work started with megacities. Alongside her mentor and colleague, the late MIT civil engineering professor Donald Harleman, she helped to develop and promote innovation in low-energy, low-cost wastewater treatment as an engineering consultant to municipalities in megacities worldwide. Plants in Hong Kong, Rio de Janeiro, and Mexico City have adopted their strategies and are now serving approximately 15.2 million users combined, treating the wastewater instead of dumping raw sewage directly into local waterways.

A major turning point in Murcott’s career came when she was the keynote speaker and sole female engineer at the Second International Women and Water Conference in Kathmandu, Nepal, in 1998. At that time, 75 percent of Nepali women were illiterate, and many had children sick with water-related diseases. The organizers of that conference, educated women from Kathmandu, invited the entire spectrum of women throughout Nepal to attend. This meant that attendees at the conference included many illiterate women, all the way up to the Queen of Nepal.

Desperate for solutions to their water problems, the women asked Murcott for help. This encounter proved powerful and career-changing, inspiring her to pivot toward designing and implementing simple, affordable household drinking water systems by working together with these women and vulnerable households, in Nepal and beyond.

Major success came two year later, when her team of MIT graduate students and partners from the Nepal Department of Water Supply and Sewerage detected the first instances of arsenic in drinking water in Nepal. In collaboration with the Nepali nonprofit Environment and Public Health Organization (ENPHO), over 40,000 tests of arsenic in tubewell groundwater were conducted, tracking the extent of water contamination for the first time.

“Without Susan and her MIT graduate student team, we wouldn’t have identified the extent of arsenic contamination in Nepal and taken action to implement remediation solutions as quickly as we did,” says Roshan Raj Shrestha, now the deputy director of water, sanitation, and hygiene at the Bill and Melinda Gates Foundation.

Murcott and ENPHO worked together to design, prototype, pilot, and implement the Arsenic Biosand Filter, subsequently manufactured and distributed throughout 17 arsenic-affected districts of Nepal. She and team members won numerous awards for this, reinvesting award funds in arsenic remediation across the country and training Nepali entrepreneurs to build and market the filters. “Her work has impacted hundreds of thousands of lives, preventing disease and death from arsenic contaminated drinking water. We owe Susan a great deal of gratitude,” says Shrestha.

Not one to stop at these accomplishments, Murcott then worked to bring her engineering knowledge and entrepreneurial spirit to aid in the elimination of waterborne disease in northern Ghana.

There, she launched the nonprofit Pure Home WATER to produce ceramic pot water filters that could help eliminate guinea worm from the water supply. Jim Niquette, Ghana country director of the Carter Center Guinea Worm Eradication Campaign, credits these filters for eradicating this debilitating disease from Ghana between 2008 and 2010.

“We went from 242 cases of guinea worm to zero in 18 months. Prior to what occurred in Ghana, no country had achieved a success of this kind so quickly,” Niquette says. “Susan’s dedication to poor people’s health and well-being, combined with the innovative ceramic pot filter technology, was critical to the unprecedented success.”

Murcott has since inspired others to build factories, with several of the MIT students she has mentored going on to build and/or manage successful factories in Uganda and South Africa. Overall, she has influenced the construction of ceramic pot filter factories in 10 countries. These factories now provide clean water to approximately 5 million users.

Murcott continues to improve clean water access in Asia through the creation of the “ECC vial,” an affordable, easy-to-use E. coli test-kit. The project to refine and scale up distribution and use of the ECC vial received support from the MIT Abdul Latif Jameel Water and Food Systems Lab through the J-WAFS Solutions Program sponsored by Community Jameel. Launched in 2020 in partnership with Nepali social entrepreneurs, this novel technology puts water quality measurement in the hands of users. The aim is to enable millions of people in Nepal and across Asia to directly measure the cleanliness of their water and advocate for safe water solutions in the years ahead.

Murcott’s impact cannot only be measured in the amount of clean water that she has helped provide. Wanting to bring what she saw abroad back to Massachusetts, Murcott was instrumental in the early days of MIT D-Lab, creating its landmark course 11.474 (G) / EC.715

(D-Lab Water, Sanitation, and Hygiene), which she has taught since 2006. Through this and other courses she has had the opportunity to meet and inspire students early in their careers.

Driven by her own experience in the male-dominated field of civil engineering, Murcott has committed herself to collaboration and mentorship, with a particular focus on mentoring young women interested in STEM. Her mentees have founded NGOs, launched humanitarian-oriented startups, developed large-scale wastewater infrastructure projects, produced research to influence national policy, and more.

“She has the unique skill of being able to guide and teach her students while also allowing space for their own curiosity, interests, and ideas,” says Kate Cincotta SM ’09, one of Murcott’s graduate students who went on to co-found the water nonprofit Saha Global. “Susan understands that working in the international development space requires both technical skills and practical knowledge that can only be gained from field experience, and connects her students with the opportunities to gain both.”

This sense of higher purpose is one that Murcott tries to live out through her research and implementation work inspiring the next generation. “It’s very important, in my life experience, to follow your dream and to serve others. Do something because it’s worth doing and because it changes people’s lives and saves lives.”

Proudly powered by WordPress
Theme: Esquire by Matthew Buchanan.