Translating proteins into music, and back

Want to create a brand new type of protein that might have useful properties? No problem. Just hum a few bars.

In a surprising marriage of science and art, researchers at MIT have developed a system for converting the molecular structures of proteins, the basic building blocks of all living beings, into audible sound that resembles musical passages. Then, reversing the process, they can introduce some variations into the music and convert it back into new proteins never before seen in nature.

Although it’s not quite as simple as humming a new protein into existence, the new system comes close. It provides a systematic way of translating a protein’s sequence of amino acids into a musical sequence, using the physical properties of the molecules to determine the sounds. Although the sounds are transposed in order to bring them within the audible range for humans, the tones and their relationships are based on the actual vibrational frequencies of each amino acid molecule itself, computed using theories from quantum chemistry.

The system was developed by Markus Buehler, the McAfee Professor of Engineering and head of the Department of Civil and Environmental Engineering at MIT, along with postdoc Chi Hua Yu and two others. As described today in the journal ACS Nano, the system translates the 20 types of amino acids, the building blocks that join together in chains to form all proteins, into a 20-tone scale. Any protein’s long sequence of amino acids then becomes a sequence of notes.

While such a scale sounds unfamiliar to people accustomed to Western musical traditions, listeners can readily recognize the relationships and differences after familiarizing themselves with the sounds. Buehler says that after listening to the resulting melodies, he is now able to distinguish certain amino acid sequences that correspond to proteins with specific structural functions. “That’s a beta sheet,” he might say, or “that’s an alpha helix.”

Learning the language of proteins

The whole concept, Buehler explains, is to get a better handle on understanding proteins and their vast array of variations. Proteins make up the structural material of skin, bone, and muscle, but are also enzymes, signaling chemicals, molecular switches, and a host of other functional materials that make up the machinery of all living things. But their structures, including the way they fold themselves into the shapes that often determine their functions, are exceedingly complicated. “They have their own language, and we don’t know how it works,” he says. “We don’t know what makes a silk protein a silk protein or what patterns reflect the functions found in an enzyme. We don’t know the code.”

By translating that language into a different form that humans are particularly well-attuned to, and that allows different aspects of the information to be encoded in different dimensions — pitch, volume, and duration — Buehler and his team hope to glean new insights into the relationships and differences between different families of proteins and their variations, and use this as a way of exploring the many possible tweaks and modifications of their structure and function. As with music, the structure of proteins is hierarchical, with different levels of structure at different scales of length or time.

The new method translates an amino acid sequence of proteins into this sequence of percussive and rhythmic sounds. Courtesy of Markus Buehler.

The team then used an artificial intelligence system to study the catalog of melodies produced by a wide variety of different proteins. They had the AI system introduce slight changes in the musical sequence or create completely new sequences, and then translated the sounds back into proteins that correspond to the modified or newly designed versions. With this process they were able to create variations of existing proteins — for example of one found in spider silk, one of nature’s strongest materials — thus making new proteins unlike any produced by evolution.

The percussive, rhythmic, and musical sounds heard here are generated entirely from amino acid sequences. Courtesy of Markus Buehler.

Although the researchers themselves may not know the underlying rules, “the AI has learned the language of how proteins are designed,” and it can encode it to create variations of existing versions, or completely new protein designs, Buehler says. Given that there are “trillions and trillions” of potential combinations, he says, when it comes to creating new proteins “you wouldn’t be able to do it from scratch, but that’s what the AI can do.”

“Composing” new proteins

By using such a system, he says training the AI system with a set of data for a particular class of proteins might take a few days, but it can then produce a design for a new variant within microseconds. “No other method comes close,” he says. “The shortcoming is the model doesn’t tell us what’s really going on inside. We just know it works.”

This way of encoding structure into music does reflect a deeper reality. “When you look at a molecule in a textbook, it’s static,” Buehler says. “But it’s not static at all. It’s moving and vibrating. Every bit of matter is a set of vibrations. And we can use this concept as a way of describing matter.”

The method does not yet allow for any kind of directed modifications — any changes in properties such as mechanical strength, elasticity, or chemical reactivity will be essentially random. “You still need to do the experiment,” he says. When a new protein variant is produced, “there’s no way to predict what it will do.”

The team also created musical compositions developed from the sounds of amino acids, which define this new 20-tone musical scale. The art pieces they constructed consist entirely of the sounds generated from amino acids. “There are no synthetic or natural instruments used, showing how this new source of sounds can be utilized as a creative platform,” Buehler says. Musical motifs derived from both naturally existing proteins and AI-generated proteins are used throughout the examples, and all the sounds, including some that resemble bass or snare drums, are also generated from the sounds of amino acids.

The researchers have created a free Android smartphone app, called Amino Acid Synthesizer, to play the sounds of amino acids and record protein sequences as musical compositions.

“Markus Buehler has been gifted with a most creative soul, and his explorations into the inner workings of biomolecules are advancing our understanding of the mechanical response of biological materials in a most significant manner,” says Marc Meyers, a professor of materials science at the University of California at San Diego, who was not involved in this work.

Meyers adds, “The focusing of this imagination to music is a novel and intriguing direction. This is experimental music at its best. The rhythms of life, including the pulsations of our heart, were the initial sources of repetitive sounds that engendered the marvelous world of music. Markus has descended into the nanospace to extract the rythms of the amino acids, the building blocks of life.”

The team also included research scientist Zhao Qin and Francisco Martin-Martinez at MIT. The work was supported by the U.S. Office of Naval Research and the National Institutes of Health.

Study: Social robots can benefit hospitalized children

A new study demonstrates, for the first time, that “social robots” used in support sessions held in pediatric units at hospitals can lead to more positive emotions in sick children.

Many hospitals host interventions in pediatric units, where child life specialists will provide clinical interventions to hospitalized children for developmental and coping support. This involves play, preparation, education, and behavioral distraction for both routine medical care, as well as before, during, and after difficult procedures. Traditional interventions include therapeutic medical play and normalizing the environment through activities such as arts and crafts, games, and celebrations.

For the study, published today in the journal Pediatrics, researchers from the MIT Media Lab, Boston Children’s Hospital, and Northeastern University deployed a robotic teddy bear, “Huggable,” across several pediatric units at Boston Children’s Hospital. More than 50 hospitalized children were randomly split into three groups of interventions that involved Huggable, a tablet-based virtual Huggable, or a traditional plush teddy bear. In general, Huggable improved various patient outcomes over those other two options.  

The study primarily demonstrated the feasibility of integrating Huggable into the interventions. But results also indicated that children playing with Huggable experienced more positive emotions overall. They also got out of bed and moved around more, and emotionally connected with the robot, asking it personal questions and inviting it to come back later to meet their families. “Such improved emotional, physical, and verbal outcomes are all positive factors that could contribute to better and faster recovery in hospitalized children,” the researchers write in their study.

Although it is a small study, it is the first to explore social robotics in a real-world inpatient pediatric setting with ill children, the researchers say. Other studies have been conducted in labs, have studied very few children, or were conducted in public settings without any patient identification.

But Huggable is designed only to assist health care specialists — not replace them, the researchers stress. “It’s a companion,” says co-author Cynthia Breazeal, an associate professor of media arts and sciences and founding director of the Personal Robots group. “Our group designs technologies with the mindset that they’re teammates. We don’t just look at the child-robot interaction. It’s about [helping] specialists and parents, because we want technology to support everyone who’s invested in the quality care of a child.”

“Child life staff provide a lot of human interaction to help normalize the hospital experience, but they can’t be with every kid, all the time. Social robots create a more consistent presence throughout the day,” adds first author Deirdre Logan, a pediatric psychologist at Boston Children’s Hospital. “There may also be kids who don’t always want to talk to people, and respond better to having a robotic stuffed animal with them. It’s exciting knowing what types of support we can provide kids who may feel isolated or scared about what they’re going through.”

Joining Breazeal and Logan on the paper are: Sooyeon Jeong, a PhD student in the Personal Robots group; Brianna O’Connell, Duncan Smith-Freedman, and Peter Weinstock, all of Boston Children’s Hospital; and Matthew Goodwin and James Heathers, both of Northeastern University.

Boosting mood

First prototyped in 2006, Huggable is a plush teddy bear with a screen depicting animated eyes. While the eventual goal is to make the robot fully autonomous, it is currently operated remotely by a specialist in the hall outside a child’s room. Through custom software, a specialist can control the robot’s facial expressions and body actions, and direct its gaze. The specialists could also talk through a speaker — with their voice automatically shifted to a higher pitch to sound more childlike — and monitor the participants via camera feed. The tablet-based avatar of the bear had identical gestures and was also remotely operated.

During the interventions involving Huggable — involving kids ages 3 to 10 years — a specialist would sing nursery rhymes to younger children through robot and move the arms during the song. Older kids would play the I Spy game, where they have to guess an object in the room described by the specialist through Huggable.  

Through self-reports and questionnaires, the researchers recorded how much the patients and families liked interacting with Huggable. Additional questionnaires assessed patient’s positive moods, as well as anxiety and perceived pain levels. The researchers also used cameras mounted in the child’s room to capture and analyze speech patterns, characterizing them as joyful or sad, using software.

A greater percentage of children and their parents reported that the children enjoyed playing with Huggable more than with the avatar or traditional teddy bear. Speech analysis backed up that result, detecting significantly more joyful expressions among the children during robotic interventions. Additionally, parents noted lower levels of perceived pain among their children.

The researchers noted that 93 percent of patients completed the Huggable-based interventions, and found few barriers to practical implementation, as determined by comments from the specialists.

A previous paper based on the same study found that the robot also seemed to facilitate greater family involvement in the interventions, compared to the other two methods, which improved the intervention overall. “Those are findings we didn’t necessarily expect in the beginning,” says Jeong, also a co-author on the previous paper. “We didn’t tell family to join any of the play sessions — it just happened naturally. When the robot came in, the child and robot and parents all interacted more, playing games or in introducing the robot.”

An automated, take-home bot

The study also generated valuable insights for developing a fully autonomous Huggable robot, which is the researchers’ ultimate goal. They were able to determine which physical gestures are used most and least often, and which features specialists may want for future iterations. Huggable, for instance, could introduce doctors before they enter a child’s room or learn a child’s interests and share that information with specialists. The researchers may also equip the robot with computer vision, so it can detect certain objects in a room to talk about those with children.

“In these early studies, we capture data … to wrap our heads around an authentic use-case scenario where, if the bear was automated, what does it need to do to provide high-quality standard of care,” Breazeal says.

In the future, that automated robot could be used to improve continuity of care. A child would take home a robot after a hospital visit to further support engagement, adherence to care regimens, and monitoring well-being.

“We want to continue thinking about how robots can become part of the whole clinical team and help everyone,” Jeong says. “When the robot goes home, we want to see the robot monitor a child’s progress. … If there’s something clinicians need to know earlier, the robot can let the clinicians know, so [they’re not] surprised at the next appointment that the child hasn’t been doing well.”

Next, the researchers are hoping to zero in on which specific patient populations may benefit the most from the Huggable interventions. “We want to find the sweet spot for the children who need this type of of extra support,” Logan says.

Smart workout apparel, “Vegetable Assassins,” and inspiration from medieval music

It doesn’t get any better than this — at least not at MIT. There’s the roar of raucous laughter as students play games or test products that they themselves have designed and built. There’s the chatter of questions asked and answered, all to the effect of “How did you do that?” and “Here’s what I did.”  

To top it off, there’s the welcoming smell of pizza, slices being pulled from rapidly cooling boxes by a group of students and teaching assistants from the four sections of 6.08 (Introduction to EECS via Interconnected Embedded Systems). They have gathered for a special occasion during the last week of spring term: to show off their class final projects.

“This is the best class I’ve taken here,” says Mussie Demisse, a sophomore in EECS, dressed in a hoodie with a square contraception on his back that could have fallen off Iron Man. He and his team have designed a “Smart Suit” that analyzes and assesses a user’s pushup form.

“The class has given me the opportunity to do research on my own,” Demisse says. “It’s introduced us to many things and it now falls on us to pursue the things we like.”

The course introduces students to working with multiple platforms, servers, databases, and microcontrollers. For the final project, four-person teams design, program, build, and demonstrate their own cloud-connected, handheld, or wearable Internet of Things systems. The result: about 85 projects ranging from a Frisbee that analyzes velocity and acceleration to a “better” GPS system for tracking the location of the MIT shuttle.

“Don’t hit the red apple! Noooo,” yells first-year student Bradley Albright as Joe Steinmeyer, EECS lecturer and 6.08 instructor, hits the wrong target while playing “Vegetable Assassins.” The object of the game is to slice the vegetables scrolling by on a computer screen, but Steinmeyer, using an internet-connected foam sword, has managed to hit an apple instead.  

Albright had the idea for a “Fruit Ninja”-style game during his first days at MIT, when he envisioned the visceral experience of slicing the air with a katana, or Japanese sword, and hitting a virtual target. Then, he and his team of Johnny Bui and Eesam Hourani, both sophomores in EECS, and Tingyu Li, a junior in management, were able to, as they put it, “take on the true villains of the food pyramid: vegetables.” They built a server-client model in which data from the sword is sent to a browser via a server connection. The server facilitates communication between all components through multiple WebSocket connections.

“It took a lot of work. Coming down to the last night, we had some problems that we had to spend a whole night finishing but I think we are all incredibly happy with the work we put into it,” Albright says.

Steinmeyer teaches 6.08 with two EECS colleagues: Max Shulaker, the Emmanuel E. Landsman (1958) Career Development Assistant Professor, and Stefanie Mueller, the X-Window Consortium Career Development Assistant Professor. The course was co-created by Steinmeyer and Joel Voldman, an EECS professor and associate department head.

Mueller, for one, is impressed with the students’ collaborative efforts as they developed their projects in just four weeks: “They really had to pull together to work,” she says. 

Even projects that don’t quite work as expected are learning experiences, Steinmeyer notes. “I’m a big fan of having people do work early on and then go and do it again later. That’s how I learned the best. I always had to learn a dumb way first.”

Demisse and his team — Amadou Bah and Stephanie Yoon, both sophomores in EECS, and Sneha Ramachandran, a junior in EECS — confronted a few setbacks in developing their Smart Suit. “We wanted something to force ourselves to play around with electronics and hardware,” he explains. “During our brainstorming session, we thought of things that would monitor your heart rate.”

Initially, they considered something that runners might use to track their form. “But running’s pretty hard. [We thought,] ‘Let’s take a step back,” Demisse recalls. “It was a natural evolution from that to pushups.”

They designed a zip-up hoodie with inertial measurement unit sensors on an elbow, the upper back, and the lower back to measure the acceleration of each body part as the user does pushups for 10 seconds. Those data are then analyzed and compared to the measurements of what is considered the “ideal” pushup form. 

A particular challenge: getting the data from various sources analyzed in reasonable amount of time. The system uses a multiplex approach, but just “listens” to one input at a time. “That makes it easier to record data at a faster rate,” Demisse says.

Another team developed a fishing game in which users cast a handheld pole and pick up “fish” viewed on a nearby screen. First-year Rafael Olivera-Cintron demonstrates by casting; a soft noise accompanies the movement. “Do you hear that ambient sound? That’s lake sounds, the sounds of water and mosquitos,” he says. He casts again and waits. And waits. “Yes, it’s a lot like fishing. A lot of waiting,” he says. “That’s my favorite part.” His teammates included EECS juniors Mohamadou Bella Bah and Chad Wood and EECS sophomores Julian Espada and Veronica Muriga.

Several teams’ projects involve music. Diana Voronin, Julia Moseyko, and Terryn Brunelle, all first-year students, are happy to show off  “DJam,” an interconnected spin on Guitar Hero. Rather than pushing buttons that correspond to imaginary guitar chords, users spin a turntable to different positions — all to the beat of a song playing in the background. 

“We just knew we wanted to do something with music because it would be fun,” Moseyko says. “We also wanted to work with something that turned. From a technical point of view, it was interesting to use that kind of sensor.”

Music from the Middle Ages inspired the team of Shahir Rahman and Patrick Kao, both sophomores in EECS, and Adam Potter and Lilia Luong, both first-years. Using a plywood version of a medieval instrument called a hurdy-gurdy, they created “Hurdy-Gurdy Hero,” which uses a built-in microphone to capture and save favorite songs to a database that processes the audio into a playable game.

“The idea is to give joy, to be able to play an actual instrument but not necessarily just for those who [already] know to play,” Rahman says. He cranks the machine and slightly squeaky but oddly harmonic notes emerge. Other students are clearly impressed by what they’re hearing. Olivera-Cintron sums up in just three words: “That is awesome.”

Qualities And Attributes Of Good Plastic Surgeons

There is no doubt that the number of people having plastic surgeries and other such procedures has been increasing substantially over the past many years. This is because they have realized that there are some obvious benefits and advantages of such cosmetic treatments, procedures, and enhancements. In the year 2017, more than 17.5 million procedures happened in the country. These ranged from facelifts to breast augmentation and again from botox injections to rhinoplasty, just to name a few. Hence, there is a growing demand for qualified and experienced cosmetic surgery specialists and other such professionals. Would it not be interesting to have an idea about the various attributes and qualities that could differentiate the good plastic surgeons from the not so good ones.

Their Training And Education

Good plastic surgeons come with the right qualification, education and the same is also backed by years of experience and expertise. These are fundamental to any good plastic surgeons in OKC and surrounding areas. There cannot be any compromise on this. When you hire the right plastic surgeons, you can be sure that they will be able to perform complicated and difficult procedures with finesse and precision. These surgeons should be certified by the American Board Of Plastic Surgery. They also should have attended the best schools and should have graduated with honors. Further, they also should have a doctorate in medicine apart from having completed a demanding residency course on plastic surgery.

Rich Professional Experience

The value of professional experience is extremely important and you must always try and find out the right information regarding the overall experience of these professional top rated plastic surgeons near me. Those having a number of years’ experience in this field would most certainly be able to perform surgeries and processes that much better. They also will be able to diagnose problems easily, identify the right solutions and also recommend exercises that would suit the patients best. Their experience will most certainly be quite useful, to say the least.

Are They Committed To Ongoing Education

Eminent and successful plastic surgeons not only have the best testimonials but also should be willing to spend time on ongoing education. This will help them to understand more about the advancements in the field of body contouring, laser skin resurfacing, and fat grafting amongst other things. He or she should always be ready to put patient care as the topmost priority. Further, they should be ready to attend various industry seminars and meetings. This will help them to be regularly updated with the various equipment and techniques that will provide patients with the best patient care that one could think of.

Integrity And Honesty

Apart from the above, there are some intrinsic moral and other qualities that one should always bear in mind. Successful plastic surgeons are always honest, upfront and do not try to beat around the bush. Their objective is not to win a surgery but to ensure that the interests of their patients are always topmost in their minds. They will never make claims that are not true and would never oversell themselves to their customers.

Conclusion

Hence at the end of the day, there is no denying the fact that there are some wonderful and time-tested qualities that set the good ones from the not so good ones.

Contact US:

Sawan Surgical Aesthetics
Address:209 Lilac Dr #200, Oklahoma City, OK
Phone: (405) 285-7660

Stackable online Master of Science in supply chain management announced

EdX, Arizona State University, and MIT have announced the launch of an online master’s degree program in supply chain management. This unique credit pathway between MIT and ASU takes a MicroMasters program from one university, MIT, and stacks it up to a full master’s degree on edX from ASU. Learners who complete and pass the Supply Chain Management MicroMasters program and then apply and gain admission to ASU are eligible to earn a top-ranked graduate degree from ASU’s W. P. Carey School of Business and ASU Online. MIT and ASU are both currently ranked in the top three for graduate supply chain and logistics by U.S. News and World Report

This new master’s degree is the latest program to launch following edX’s October 2018 announcement of 10 disruptively priced and top-ranked online master’s degree programs available on edX.org. Master’s degrees on edX are unique because they are stacked, degree-granting programs with a MicroMasters program component. A MicroMasters program is a series of graduate-level courses that provides learners with valuable standalone skills that translate into career-focused advancement, as well as the option to use the completed coursework as a stepping stone toward credit in a full master’s degree program. 

“We are excited to strengthen our relationship with ASU to offer this innovative, top-ranked online master’s degree program in supply chain management,” says Anant Agarwal, edX CEO and MIT professor. “This announcement comes at a time when the workplace is changing more rapidly than ever before, and employers are in need of highly skilled talent, especially in the fields most impacted by advances in technology. This new offering truly transforms traditional graduate education by bringing together two top-ranked schools in supply chain management to create the world’s first stackable, hybrid graduate degree program. This approach to a stackable, flexible, top-quality online master’s degree is the latest milestone in addressing today’s global skills gap.”

ASU’s online master’s degree program will help prepare a highly technical and competent global workforce for advancement in supply chain management careers across a broad diversity of industries and functions. Students enrolled in the program will also gain an in-depth understanding of the role the supply chain manager can play in an enterprise supply chain and in determining overall strategy. 

“We’re very excited to collaborate with MIT and edX to increase accessibility to a top-ranked degree in supply chain management,” says Amy Hillman, dean of the W. P. Carey School of Business at ASU. “We believe there will be many students who are eager to dive deeper after their MicroMasters program to earn a master’s degree from ASU, and that more learners will be drawn to the MIT Supply Chain Management MicroMasters program as this new pathway to a graduate degree within the edX platform becomes available.”
 
With this new pathway, the MIT Supply Chain Management MicroMasters program now offers learners pathways to completing a master’s degree at 21 institutions. This new program with ASU for the supply chain management online master’s degree offers a seamless learner experience through an easy transition of credit and a timely completion of degree requirements without leaving the edX platform. 

“Learners who complete the MITx MicroMasters program credential from the MIT Center for Transportation and Logistics will now have the opportunity to transition seamlessly online to a full master’s degree from ASU,” says Krishna Rajagopal, dean for digital learning at MIT Open Learning. “We are delighted to add this program to MIT’s growing number of pathways that provide learners with increased access to higher education and career advancement opportunities in a flexible, affordable manner.”

The online Master of Science in supply chain management from ASU will launch in January 2020. Students currently enrolled in, or who have already completed, the MITx Supply Chain Management MicroMasters program can apply now for the degree program, with an application deadline of Dec. 16.

3Q: David Mindell on his vision for human-centered robotics

David Mindell, Frances and David Dibner Professor of the History of Engineering and Manufacturing in the School of Humanities, Arts, and Social Sciences and professor of aeronautics and astronautics, researches the intersections of human behavior, technological innovation, and automation. Mindell is the author of five acclaimed books, most recently “Our Robots, Ourselves: Robotics and the Myths of Autonomy” (Viking, 2015) as well as the co-founder of the Humatics Corporation, which develops technologies for human-centered automation. SHASS Communications spoke with Mindell recently on how his vision for human-centered robotics is developing and his thoughts about the new MIT Stephen A. Schwarzman College of Computing, which aims to integrate technical and humanistic research and education.  
 
Q: Interdisciplinary programs have proved challenging to sustain, given the differing methodologies and vocabularies of the fields being brought together. How might the MIT Schwarzman College of Computing design the curriculum to educate “bilinguals” — students who are adept in both advanced computation and one of more of the humanities, arts, and social science fields?
 
A: Some technology leaders today are naive and uneducated in humanistic and social thinking. They still think that technology evolves on its own and “impacts” society, instead of understanding technology as a human and cultural expression, as part of society.

As a historian and an engineer, and MIT’s only faculty member with a dual appointment in engineering and the humanities, I’ve been “bilingual” my entire career (long before we began using that term for fluency in both humanities and technology fields). My education started with firm grounding in two fields — electrical engineering and history — that I continue to study.

Dual competence is a good model for undergraduates at MIT today as well. Pick two: not necessarily the two that I chose, but any two disciplines that capture the core of technology and the core of the humanities. Disciplines at the undergraduate level provide structure, conventions, and professional identity (although my appointment is in Aero/Astro, I still identify as an electrical engineer). I prefer the term “dual disciplinary” to “interdisciplinary.” 

The College of Computing curriculum should focus on fundamentals, not just engineering plus some dabbling in social implications.

It sends the wrong message to students that “the technical stuff is core, and then we need to add all this wrapper humanities and social sciences around the engineering.” Rather, we need to say: “master two fundamental ways of thinking about the world, one technical and one humanistic or social.” Sometimes these two modes will be at odds with each other, which raises critical questions. Other times they will be synergistic and energizing. For example, my historical work on the Apollo guidance computer inspired a great deal of my current engineering work on precision navigation.

Q: In naming the company you founded Humatics, you’ve combined “human” and “robotics,” highlighting the synergy between human beings and our advanced technologies. What projects underway at Humatics define and demonstrate how you envision people working collaboratively with machines? 

A: Humatics builds on the synthesis that has defined my career — the name is the first four letters of “human” and the last four letters of “robotics.” Our mission is to build technologies that weave robotics into the human world, rather than shape human behavior to the limitations of the robots. We do very technical stuff: We build our own radar chips, our own signal processing algorithms, our own AI-based navigation systems. But we also craft our technologies to be human-centered, to give users and workers information that enables them to make their own decisions and work safer and more efficiently.

We’re currently working to incorporate our ultra-wideband navigation systems into subway and mass transit systems. Humatics’ technologies will enable modern signaling systems to be installed more quickly and less expensively. It’s gritty, dirty work down in the tunnels, but it is a “smart city” application that can improve the daily lives of millions of people. By enabling the trains to navigate themselves with centimeter-precision, we enable greater rush-hour throughput, fewer interruptions, even improved access for people with disabilities, at a minimal cost compared to laying new track.

A great deal of this work focuses on reliability, robustness, and safety. These are large technological systems that MIT used to focus on in the Engineering Systems Division. They are legacy infrastructure running at full capacity, with a variety of stakeholders, and technical issues hashed out in political debate. As an opportunity to improve peoples’ lives with our technology, this project is very motivating for the Humatics team.

We see a subway system as a giant robot that collaborates with millions of people every day. Indeed, for all their flaws, it does so today in beautifully fluid ways. Disruption is not an option. Similarly, we see factories, e-commerce fulfillment centers, even entire supply chains as giant human-machine systems that combine three key elements: people, robots (vehicles), and infrastructure. Humatics builds the technological glue that ties these systems together.

Q: Autonomous cars were touted to be available soon, but their design has run into issues and ethical questions. Is there a different approach to the design of artificially intelligent vehicles, one that does not attempt to create fully autonomous vehicles? If so, what are the barriers or resistance to human-centered approaches?

A: Too many engineers still imagine autonomy as meaning “alone in the world.” This approach derives from a specific historical imagination of autonomy, derived from Defense Advanced Research Projects Agency sponsorship and elsewhere, that a robot should be independent of all infrastructure. While that’s potentially appropriate for military operations, the promise of autonomy on our roads must be the promise of autonomy in the human world, in myriad exquisite relationships.

Autonomous vehicle companies are learning, at great expense, that they already depend heavily on infrastructure (including roads and traffic signs) and that the sooner they learn to embrace it, the sooner they can deploy at scale. Decades of experience have taught us that, to function in the human world, autonomy must be connected, relational, and situated. Human-centered autonomy in automobiles must be more than a fancy FitBit on a driver; it must factor into the fundamental design of the systems: What do we wish to control? Whom do we trust? Who owns our data? How are our systems trained? How do they handle failure? Who gets to decide?

The current crisis over the Boeing 737 MAX control systems show these questions are hard to get right, even in aviation. There we have a great deal of regulation, formalism, training, and procedure, not to mention a safety culture that evolved over a century. For autonomous cars, with radically different regulatory settings and operating environments, not to mention non-deterministic software, we still have a great deal to learn. Sometimes I think it could take the better part of this century to really learn how to build robust autonomy into safety-critical systems at scale.
 

Interview prepared by MIT SHASS Communications
Editorial and Design Director: Emily Hiestand
Interview conducted by writer Maria Iacobo

 

Why Choose A Lawn Care Professional

Though your backyard or garden is located outside your home, it catches the first attention of your entire home. You must, therefore, ensure that your garden and backyard remains in the best condition at all points of time. There is no point in having the best-maintained living rooms, kitchen, bedrooms and bathrooms if the outside of your home looks dirty and shabby. The plants, trees, and grass in your backyard and garden tend to overgrow within a short period of time. Hence, there is a need to regularly trim them and keep them in a manageable condition. Further, weeds and other unwanted growths could damage your expensive plants and trees. Apart from the above, there are other advantages also when you decide to hire the right lawn care professionals. We are sharing a few of them so that you know why it makes sense to spend some money and hire these professionals.

 Curb Appeal

 Prospective home buyers are extremely particular about curb appeal and therefore you must be sure that your landscaping and lawn plays a role in giving that effect. It has been found that homes with well-maintained backyards and gardens always offer a much better price. It, therefore, makes economic and commercial sense to ensure that you have the best of lawn care professionals to help you.

 Have More Free Time At Your Disposal

 There is no doubt that time is a precious thing for you. Given the hectic and busy lifestyles that we all lead, most of us only have weekends to ourselves. We would not like to spend this time taking care of our lawn and garden. Just by spending some money and hiring experienced and professional lawn care service provides we will be able to make much better use of the time that we have at our disposal. You could hang out with family, take your pet dog for a walk or be with your friends, watch your favorite movie or even go to that favorite match of your favorite club. Many homeowners use the weekends for a short vacation with the family members.

 They Come With Expertise

 There is one more valid reason to hire these professionals. They have years of experience and expertise behind them. They will use the same to ensure that your lawn looks in good condition and also bring something new and exciting to the table. They have many tricks and tips that could help your lawn to look beautiful, fresh and also green. They also could help you to grow some vegetables and fruits for your home and this could also save on your yearly grocery budgets quite a bit. Hence, the expertise of these professionals, without any doubt is one of the main reasons why you should hire them.

 They Have Professional Equipment

 Your lawn will look great provided you have the right equipment to make it look good. Lawn care professionals have some of the most modern equipment and machinery. For example, when it comes to trimming and cutting the grass, they use the sharpest blades. They will cut and trim the grass perfectly safely and the risk of injuries will be almost zero. This will also help in protecting your lawn from other problems such as pesky insects, diseases and also damaging weeds and other such problems.

Contact US:

Diversified Lawn Services, LLC
Address: 5030 N May Ave #201,Oklahoma City,OK
Phone: (405) 306-2272

Window Replacement: Benefits Of Replacing Your Windows

Windows are an essential part of your house. It not only helps in offering lights and views but it also helps in obstructing the heat or the cold air from outside. It also prevents the snow, storm and rain from entering into your house. But we often fail to look after it and take care of it. You need to maintain the windows and replace it when needed to ensure that your house is completely safe. With the help of the Window replacement service, you will able to get it done smoothly. But you need to know how to identify whether or not you need window replacement in OKC.

Signs for window replacement

Here are some of the signs that you have to notice to know whether or not you need to replace your windows:

#1: Warped and damaged windows: Often due to water, heat and humidity, the windows tend to get damaged or warped. You will find it quite difficult to shut or open the windows. Repairing them will not help you as you may notice the cracks and warped woods.

#2: High energy bills: If you are paying hefty energy bills then you need to make sure if the windows are working properly. When there are cracks and gaps in the windows, the air from outside tend to rush into your house. This can slow down the process of cooling or heating in your house.

#3: Makeover: Do you want to remodel your house and give it a makeover? Then it is high time to replace the windows. This will help you to enhance the beauty of the house as well as it will increase it efficiency and functionality.

#4: Audible outside noise: Can you hear the dogs barding, traffic noise and loud horns of cars? Then it might be the right time for you to invest on the home window replacement services in OKC. When the noise is audible, it means there are gaps and cracks. The windows are not able to shut or close properly.

Benefits of window replacement

There are many benefits of replacing the windows. Some of the benefits are:

  • Helps in lowering the cost of energy bills
  • Protect your house from the harsh and harmful UV rays
  • Provides you with a safer home from rain, snow and heat
  • Reduce the noise from outside
  • Increases the aesthetic factor of the house
  • Increase the value of your home

Conclusion

So, these are some of the reasons why you need a window replacement service and its benefits. The windows act as a barrier as well as a pathway for the outer environment. When you do not want the heat waves or the cold winds from outside to enter into your house, you need to ensure that the windows are doing their job perfectly. But with continuous exposure to heat, storm, snow and water, it can often get warped or damaged. All you need to do is replace the old windows and get a new one. This will help you to protect your house completely.

Contact US:

Home Renew
Address:722 N Broadway Ave Suite 301 Oklahoma City, OK
Phone: 405-437-2104

A scholar and teacher re-examines moments in the history of STEM

When Clare Kim began her fall 2017 semester as the teaching assistant for 21H.S01, the inaugural “MIT and Slavery” course, she didn’t know she and her students would be creating a historical moment of their own at the Institute.

Along with Craig Steven Wilder, the Barton L. Weller Professor of History, and Nora Murphy, an archivist for researcher services in the MIT Libraries, Kim helped a team of students use archival materials to examine the Institute’s ties to slavery and how that legacy has impacted the modern structure of scientific institutions. The findings that came to light through the class thrust Kim and her students onto a prominent stage. They spoke about their research in media interviews and at a standing-room-only community forum, and helped bring MIT into a national conversation about universities and the institution of slavery in the United States.

For Kim, a PhD student in MIT’s Program in History, Anthropology, and Science, Technology, and Society (HASTS), it was especially rewarding to help the students to think critically about their own scientific work through a historical context. She enjoyed seeing how the course challenged conventional ideas that had been presented to them about their various fields of study.

“I think people tend to think too much about history as a series of true facts where the narrative that gets constructed is stabilized. Conducting historical research is fun because you have a chance to re-examine evidence, examine archival materials, reinterpret some of what has already been written, and craft a new narrative as a result,” Kim says.

This year, Kim was awarded the prestigious Goodwin Medal for her work as a TA for several MIT courses. The award recognizes graduate teaching assistants that have gone the extra mile in the classroom. Faculty, colleagues, and former students praised Kim for her compassionate, supportive, and individual approach to teaching.

“I love teaching,” she says. “I like to have conversations with my students about what I’m thinking about. It’s not that I’m just imparting knowledge, but I want them to develop a critical way of thinking. I want them to be able to challenge whatever analyses I introduce to them.”

Kim also applies this critical-thinking lens to her own scholarship in the history of mathematics. She is particularly interested in studying math this way because the field is often perceived as “all-stable” and contained, when in fact its boundaries have been much more fluid.

Mathematics and creativity

Kim’s own work re-examines the history of mathematical thought and how it has impacted nonscientific and technical fields in U.S. intellectual life. Her dissertation focuses on the history of mathematics and the ways that mathematicians interacted with artists, humanists, and philosophers throughout the 20th century. She looks at the dialogue and negotiations between different scholars, exploring how they reconfigured the boundaries between academic disciplines.

Kim says that this moment in history is particularly interesting because it reframes mathematics as a field that hasn’t operated autonomously, but rather has engaged with humanistic and artistic practices. This creative perspective, she says, suggests an ongoing, historical relationship between mathematics and the arts and humanities that may come as a surprise to those more likely to associate mathematics with technical and military applications, at least in terms of practical uses.

“Accepting this clean divide between mathematics and the arts occludes all of these fascinating interactions and conversations between mathematicians and nonmathematicians about what it meant to be modern and creative,” Kim says. One such moment of interaction she explores is between mathematicians and design theorists in the 1930s, who worked together in an attempt to develop and teach a mathematical theory of “aesthetic measure,” a way of ascribing judgments of beauty and taste.  

Building the foundation

With an engineering professor father and a mathematician mother, Kim has long been interested in science and mathematics. However, she says influences from her family, which includes a twin sister who is a classicist and an older sister who studied structural biology, ensured that she would also develop a strong background in the humanities and literature.

Kim entered college thinking that she would pursue a technical field, though likely not math itself — she jokes that her math career peaked during her time competing in MATHCOUNTS as a kid. But during her undergraduate years at Brown University, she took a course on the history of science taught by Joan Richards, a professor specializing in the history of mathematics. There, she discovered her interest in studying not just scientific knowledge, but the people who pursue it.

After earning a bachelor’s in history at Brown, with a focus in mathematics and science, Kim decided to pursue a doctoral degree. MIT’s HASTS program appealed to her because of its interdisciplinary approach to studying the social and political components of science and technology.

“In addition to receiving more formal training in the history of science itself, HASTS trained me in anthropological inquiry, political theory, and all these different kinds of methods that could be brought to bear on the social sciences and humanities more generally,” Kim says.

After defending her thesis, Kim will begin a postdoc at Washington University in St. Louis, where she will continue her research and begin converting her dissertation into a book manuscript. She will also be teaching a course she has developed called “Code and Craft,” a course that explores, in a variety of historical contexts, the artful and artisanal components of AI, computing, and otherwise “technical” domains.

In her free time, Kim practices taekwondo (she has a first-degree black belt) and enjoys taking long walks through Cambridge, which she says is how she gets some of her best thinking done.

Transmedia Storytelling Initiative launches with $1.1 million gift

Driven by the rise of transformative digital technologies and the proliferation of data, human storytelling is rapidly evolving in ways that challenge and expand our very understanding of narrative. Transmedia — where stories and data operate across multiple platforms and social transformations — and its wide range of theoretical, philosophical, and creative perspectives, needs shared critique around making and understanding.

MIT’s School of Architecture and Planning (SA+P), working closely with faculty in the MIT School of Humanities, Arts, and Social Sciences (SHASS) and others across the Institute, has launched the Transmedia Storytelling Initiative under the direction of Professor Caroline Jones, an art historian, critic, and curator in the History, Theory, Criticism section of SA+P’s Department of Architecture. The initiative will build on MIT’s bold tradition of art education, research, production, and innovation in media-based storytelling, from film through augmented reality. Supported by a foundational gift from David and Nina Fialkow, this initiative will create an influential hub for pedagogy and research in time-based media.

The goal of the program is to create new partnerships among faculty across schools, offer pioneering pedagogy to students at the graduate and undergraduate levels, convene conversations among makers and theorists of time-based media, and encourage shared debate and public knowledge about pressing social issues, aesthetic theories, and technologies of the moving image.

The program will bring together faculty from SA+P and SHASS, including the Comparative Media Studies/Writing program, and from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL). The formation of the MIT Stephen A. Schwarzman College of Computing adds another powerful dimension to the collaborative potential.

“We are grateful to Nina and David for helping us build on the rich heritage of MIT in this domain and carry it forward,” says SA+P Dean Hashim Sarkis. “Their passion for both innovation and art is invaluable as we embark on this new venture.”

The Fialkows’ interest in the initiative stems from their longstanding engagement with filmmaking. David Fialkow, cofounder and managing director of venture capital firm General Catalyst, earned the 2018 Academy Award for producing the year’s best documentary, “Icarus.” Nina Fialkow has worked as an independent film producer for PBS as well as on several award-winning documentaries. Nina has served as chair of the Massachusetts Cultural Council since 2016.

“We are thrilled and humbled to support MIT’s vision for storytelling,” say David and Nina Fialkow. “We hope to tap into our ecosystem of premier thinkers, creators, and funders to grow this initiative into a transformative program for MIT’s students, the broader community, and our society.”

The building blocks

The Transmedia Storytelling Initiative draws on MIT’s long commitment to provocative work produced at the intersection of art and technology.

In 1967, the Department of Architecture established the Film Section and founded the Center for Advanced Visual Studies (CAVS). Over time, CAVS brought scores of important video, computer, and “systems” artists to campus. In parallel, the Film Section trained generations of filmmakers as part of Architecture’s Visual Arts Program (VAP). SA+P uniquely brought making together with theorizing, as Urban Studies and Architecture departments fostered sections such as History, Theory, Criticism (HTC), and the Architecture Machine group that became the Media Lab in 1985.

A major proponent of “direct cinema,” the Film Section was based in the Department of Architecture until it relocated to the Media Lab. With the retirement of its charismatic leader, Professor Richard Leacock, its energies shifted to the Media Lab’s Interactive Cinema group (1987–2004) under the direction of the lab’s research scientist and Leacock’s former student, Glorianna Davenport.

The 1990s’ shift from analog film and video to “digitally convergent” forms (based on bits, bytes, and algorithms) transformed production and critical understanding of time-based media, distributing storytelling and making across the Institute (and across media platforms, going “viral” around the globe).

In parallel to Davenport’s Interactive Cinema group and preceding the Media Lab’s Future Storytelling group (2008–2017), the Comparative Media Studies program — now Comparative Media Studies/Writing (CMS/W) — emerged in SHASS in 1999 and quickly proved to be a leader in cross-media studies. The research of CMS/W scholars such as Henry Jenkins gave rise to the terms “transmedia storytelling” and “convergence” that have since become widely adopted.

The program’s commitment to MIT’s “mens-et-manus” (“mind-and-hand”) ethos takes the form of several field-shaping research labs, including: the Open Documentary Lab, which partners with Sundance and Oculus, explores storytelling and storyfinding with interactive, immersive, and machine learning systems; and the Game Lab, which draws on emergent technologies and partners with colleagues in the Department of Computer Science and Engineering to create rule-based ludic narratives. Current CMS/W faculty such as professors William Uricchio, Nick Montfort, D. Fox Harrell, and Lisa Parks each lead labs that draw fellows and postdocs to their explorations of expressive systems. All have been actively involved in the discussions leading to and shaping this new initiative.

Reflecting on the new initiative, Melissa Nobles, Kenan Sahin Dean of SHASS, says, “For more than two decades, the media, writing, and literature faculty in MIT SHASS have been at the forefront of examining the changing nature of media to empower storytelling, collaborating with other schools across the Institute. The Transmedia Initiative will enable our faculty in CMS/W and other disciplines in our school to work with the SA+P faculty and build new partnerships that apply the humanistic lens to emerging media, especially as it becomes increasingly digital and ever more influential in our society.”

The Transmedia Storytelling initiative will draw on these related conversations across MIT, in the urgent social project of revealing stories created within data by filters and algorithms, as well as producing new stories through the emerging media of the future.

“For the first time since the analog days of the Film Section, there will be a shared conversation around the moving image and its relationship to our lived realities,” says Caroline Jones. “Transmedia’s existing capacity to multiply storylines and allow users to participate in co-creation will be amplified by the collaborative force of MIT makers and theorists. MIT is the perfect place to launch this, and now is the time.”

Involving members of several schools will be important to the success of the new initiative. Increasingly, faculty across SA+P use moving images, cinematic tropes, and powerful narratives to model potential realities and tell stories with design in the world. Media theorists in SHASS use humanistic tools to decode the stories embedded in our algorithms and the feelings provoked by media, from immersion to surveillance. 

SA+P’s Art, Culture and Technology program — the successor to VAP and CAVS — currently includes three faculty who are renowned for theorizing and producing innovative forms of what has long been theorized as “expanded cinema”: Judith Barry (filmic installations and media theory); Renée Green (“Free Agent Media,” “Cinematic Migrations”); and Nida Sinnokrot (“Horizontal Cinema”). In these artists’ works, the historical “new media” of cinema is reanimated, deconstructed, and reassembled to address wholly contemporary concerns.

Vision for the initiative

Understandings of narrative, the making of time-based media, and modes of alternative storytelling go well beyond “film.” CMS in particular ranges across popular culture entities such as music video, computer games, and graphic novels, as well as more academically focused practices from computational poetry to net art.

The Transmedia Storytelling Initiative will draw together the various strands of such compelling research and teaching about time-based media to meet the 21st century’s unprecedented demands, including consideration of ethical dimensions.

“Stories unwind to reveal humans’ moral thinking,” says Jones. “Implicit in the Transmedia Storytelling Initiative is the imperative to convene an ethical conversation about what narratives are propelling the platforms we share and how we can mindfully create new stories together.”

Aiming ultimately for a physical footprint offering gathering, production, and presentation spaces, the initiative will begin to coordinate pedagogy for a proposed undergraduate minor in Transmedia. This course of study will encompass storytelling via production and theory, spanning from computational platforms that convert data to affective videos to artistic documentary forms, to analysis and critique of contemporary media technologies.

Proudly powered by WordPress
Theme: Esquire by Matthew Buchanan.